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Quantum Monte Carlo study of the one-dimensional Holstein model of spinless fermions

Ross H. McKenzi¢, C. J. Hamer, and D. W. Murray
School of Physics, University of New South Wales, Sydney 2052, Australia
(Received 29 November 1995

The Holstein model of spinless fermions interacting with dispersionless phonons in one dimension is studied
by a Green’s function Monte Carlo technique. The ground-state energy, first fermionic excited state, density
wave correlations, and mean lattice displacements are calculated for lattices of up to 16 sites, for one fermion
per two sites, i.e., a half-filled band. Results are obtained for values of the fermion hopping parameter of
t=0.1lw, o, and 1@, wherew is the phonon frequency. At a finite fermion-phonon couplinthere is a
transition from a metallic phase to an insulating phase in which there is charge-density-wave order. Finite-size
scaling is found to hold in the metallic phase and is used to extract the coupling dependence of the Luttinger
liguid parametersy, andK ,, the velocity of charge excitations, and the correlation exponent, respectively. For
free fermions ¢=0) and for strong couplingg?>tw) our results agree well with known analytic results.

I. INTRODUCTION and momentum operators are denotedgbwand p;, respec-
tively. The Hamiltonian for the Holstein modéht half fill-
A wide range of quasi-one-dimensional materials haveng) is’
electronic properties that are dominated by the Peierls or 1
charge-density-wave instability caused by the electron- _ T T 1/2 i
phongon intera{tioﬁ.For a haIf—fi>I/Ied band it isyenergetically H= tEi (CiCi+1t CivaC)—9(2Mw) 2.: (Ci G 2>q'
favorable for the lattice to dimerize and open an energy gap
at the Fermi surface. Although the lattice distortion increases i) l 2.2 E
the It : ; +2 Pl S Me®gi - S o (1)
e lattice energy, opening the electronic energy gap prefer- T 2M 2 2

entially lowers the total energy for highly anisotropic . . . L .
system@ These systems are often modeled by the oneforasystem oN lattice sites. This Hamiltonian has particle-

dimensional Holstefhor Su-Schrieffer-Heege(SSH mod- ~ Nole symmetry since the tr_ans_format|oq—>(—1)'_c;‘,

els. Most treatments of the Peierls instability treat thedi— —di leavesH mvangnt. This discrete sy.mmetry IS bro-

phonons in the mean-field or rigid lattice approximation.X€n in the charge-density-wave phase which has the elec-

This is questionable in one dimension and, furthermore, in &ONic order parameter

wide range of materials the lattice distortion is comparable to 1

the zero-point motion of the latticelt has recently been Me=—>, (—1)(clc) 2)

shown that the quantum lattice fluctuations must be taken N4

into account to satisfactor.ily describ(_a optical propertiés. and the phonon order parameter

Several authors have previously considered the role of quan-

tum lattice fluctuations for the SSH mofl@ind the Holstein 1 .

modef~?at half-filling. Voit and Schulz have considered the mMp= Nz (=D, ()

interplay of quantum lattice fluctuations and electron- '

electron interactions away from haIf-fiIIirﬁj.Recently the  which is a measure of the dimerization.

Holstein model, also known as the molecular crystal model, |f phonon creation and annihilation operators are denoted

has also received considerable attention because the chaly ai‘r anda; , respectively, the Hamiltoniafl) can be writ-

lenge of highT and fullerene superconductors has revealeden

deficiencies in our understanding of the electron-phonon in-

teraction and the competition between superconductivity and " " " 1 "

charge-density-wave instabilities. This has motivated studies H= —t2 (cleiii el c) -9 | clei- >|(@itay)

of the Holstein model in infinite dimension$, two ' '

dimensiong? one dimensior? and on just a few site¥. ;
We consider the Holstein model in one dimension at half- + wzi a;a;. 4

filling and only with spinless fermions, for simplicity. The

spinless fermions hop along a one-dimensional chain andihus ground-state properties will be determined by two in-

interact with a phonon mode located on each lattice site. Thdependent parameters, which we will take to the and

creation operator for a fermion on sités denotedc;. The  g/w. It is also useful to define the dimensionless electron-

fermions can hop between neighboring sites with amplitudgghonon coupling

t. In the absence of interactions the phonons all have the )

same frequency, i.e., they are dispersionless. The electron- \= 9

phonon coupling, in units of energy, & Phonon position mtw’

©)
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Although for simplicity we confine ourselves to the casetinger liquid” conjecturé®?this phase should be in the same
of spinless fermions, this model is still of physical relevanceuniversality class as the Tomonaga-Luttinger model of inter-
in at least two situations. The first situation concerns stronglhacting spinless fermions. This means the low-energy proper-
correlated electron systems. In the infinifelimit the Hub-  ties of the metallic phase are completely described by an
bard model is known to map onto the case of spinleseffective Luttinger model with two parameterns;, the ve-
fermions!® This may be realized in the 1:2 TCNQ salts. locity of charge excitations or renormalized Fermi velocity,
The second situation concerns the spin-Peierls transition.and K, the renormalized effective couplir(gtiffness con-
Using a Jordan-Wigner transformatfdrthis model can be stant. Important properties of the Luttinger model, quite dis-
mapped onto aiXX spin chain in zero field with the Hamil- tinct from those of a conventional Fermi liquid, di¢ there

tonian are no quasiparticle excitations at the Fermi surface(and
all correlation functions have nonuniversal exponents that
H=—-2t>, (S, ,+99,,)-9> S(a+a) can be written in terms of the single paramekey. For
i i

example,K, determines the singularity of the momentum
distribution function close to the Fermi surface:
+wY, ala;. (6) 1
I
n(k)= 5 —sgnk—ke)|k—ke|* 0
It was recently shown rigorously that for the one-
dimensional Holstein model of spinless fermions at half-and of the single-particle density of states
filling there is no long range order for sufficiently small cou-
pling g.?? Hirsch and Fradkihstudied the Holstein model at p(E)~|E|, (8)
half-filling using a world-line Monte Carlo technique and a

strong coupling expansion. The expansion suggested that feﬁhere

spinless fermions quantum lattice fluctuations destroy the 1 1

dimerized state if the fermion-phonon coupling was suffi- a=3|K,+ __2)_ 9)
ciently weak and the phonon frequency sufficiently high. The 2 Ko

quantum Monte Carlo simulations were performed forgq free fermion&K ,=1 ande=0. For attractiverepulsive
0.5w<t<3w and gave a phase diagram qualitatively CONSISinteractionsK ,>1 (K,<1). It is the remarkable that, as

tent with the strong coupling expansion. In contrast, for fer'explained below, the parametess and K, can be deter-
) P

mions with spin their results were consistent with dimeriza-yineq from numerical calculations on systems of finite size.
tion for finite phonon frequency.

Zheng, Feinberg, and Avignbhused a variational po-
laron wave function to study the Holstein model at half-
filling. For spinless fermions the ground state is a charge- The ground-state enerdgy(N) of a conformally invariant
density wave forall parameter values. Most of their results system ofN sites is, to leading order in I4/%°
were consistent with Hirsch and Fradkin. However, they
found that for large phonon frequencids=0.3w») there was Eo(N)
a first-order phase transition, with a very large jump in the N
CDW order parameter, between CDW phases when ) ] o
g2~ 10w. They point out that this transition may be an arti- where €., is the ground-state energy per site of the infinite
fact of the variational treatment since it is known that inSystemyu, is the velocity of charge excitations, ais the
small-polaron theory of a single electron a similar two- conformal charge. Care must be taken with boundary condi-
minimum structure, leading to nonanalytic behavior somelions. We use antiperiodi@eriodio boundary conditions for
times referred to as “self-trapping,” occurs and is known tothe fermions when there is an evéwdd number of fermi-
be an artifact of the variational treatmeft? ons. This corresponds to periodic boundary conditions for

This paper presents a study of the Holstein model using € associated spin or bosonic modelst the system is a
Green’s function Monte Carlo technique. Section Il reviewsLuttinger liquid it belongs to the same universality class as
how the metallic phase should be a Luttinger liquid and howthe Gaussian model an@=1.'® The slope of a plot of
finite-size scaling can be used to extract the Luttinger liquicEo(N)/N versus IN? (compare Fig. Lcan then be used to
parameters. Section Il briefly summarizes known analyticletermineu,, .
results of the Holstein model that can be used to check and The energy of the first excited state is, to leading order in
help understand our Monte Carlo results. Section IV containd/N,

a detailed description of the Green’s function Monte Carlo

technique that we use. Our results are presented and inter- EL(N)— Eq(N)= 2mu X (11)
preted in Sec. V. The physical picture that emerges from our 1 0 N

results is discussed in the final section.

B. Finite-size scaling

7'rupC
6N2

(10

€x

wherex is the scaling dimensiofl.A Luttinger liquid has the

Il. LUTTINGER LIQUIDS AND FINITE-SIZE SCALING unusual property that depends on the coupling constants.
In the presence of particle-hole symmetrgan be related

to the correlation exponeiit, which determines the asymp-
For weak coupling and high frequency the system is in aotic decay ofall correlation functions. LeE. ;(N) denote
metallic, i.e., gapless phase. According to Haldane’s “Lut-the ground-state energy &f/2=1 fermions onN sites. By

A. The Luttinger liquid conjecture
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FIG. 1. Finite-size scaling of the ground-state endeg{N) for
different values of the fermion-phonon coupligg The data shown

FIG. 2. Finite-size scaling of the hole energy for different values
of the fermion-phonon coupling. The data shown are fot= 4, 6,

are forN= 4, 6, 8, and 16 lattice sites. All data are for a fermion 8, and 16 lattice site€,(N) is the ground-state energy of a system

hopping parametetr equal to the phonon frequeney and for a

half-filled band(i.e., one fermion per two sitgsAll energies are in
units of . If the system is critical for a particula value, then the
data forN large should lie on a straight lifeee Eq(10)]. The lines

are least square fits to a parab@ae text The errors in the Monte
Carlo data are smaller than the symbol sizes.

particle-hole symmetre , ;(N)=E_;(N). In a general Lut-
tinger liquid of spinless fermion&with charge density the
compressibilityx is given by

1 d%e.(n) mu,

s K, (12
Since particle-hole symmetry implie%,.(n)/dn=0 it fol-
lows that

E..(N)=E4x(N o= ZNaZEW(n) 13
+1(N)=Eq( )+§N on? (13
which with (12) implies that to leading order in 4/
U,
E-1(N)—Eo(N)= (14

2K N’

This is identical to(11) with K,=1/4x. Hence, ifu, is
known a plot of the energy gap versudNl{compare Fig. 2
can be used to determine, .

IIl. ANALYTIC RESULTS

Certain limits of the Holstein model for which analytic
results can be obtained are now briefly reviewed. These re- 9
sults will be compared to the appropriate numerical results.

of N/2 fermions andE _;(N) is the ground-state energy of a system
of N/2—1 fermions. All data are for a fermion hopping parameter
t equal to the phonon frequenay. All energies are in units of
w. If the system is critical, then for that value the data for large
N should lie on a straight line through the origsee Eq(11)]. The
lines are least square fits to a culfgee text

A. Localized fermions (t=0)

The fermions cannot move between sites and the Hamil-
tonian reduces ttN independent Hamiltonians. The Hamil-
tonian for theith site is

1 1 1 1
Hi:mpi2+ §MwZQi2— ( nj— 5) 9(2Mw) g~ i
(15
wherenizc?ci is the fermion occupation at site The pres-
ence or absence of a fermion shifts the equilibrium position
of the oscillator to+q. or —q., respectively, where

M
qe=g<z) =(ai(2n;i—1)). (16)
This Hamiltonian can be diagonalized by the Lang-
Firsov transformatioR® c,—ciexpge(al—a;)), a—a;
—(2n;—1)qg,. The mean square lattice displacement is

o —— (17)
: € 2Mw’
The ground-state energy per site is
2
€p=——". (18

4w
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232 [(glw)®  @2X_1
=— dx .
0 X

21

0|T"L4\\""""'--""- [0))
(a) . y :
There is an additional term, of second ordet3fw, involv-

ing next-nearest-neighbor interactions but it is smaller by a
factor of order 1K and so the effective Hamiltonian should
accurately describe the physics in the strong coupling limit,
A>1 or g?>tw.

The effective Hamiltonian is, after a Jordan-Wigner trans-
S W formation, of the same form as that of the exactly soluble
@ ] antiferromagneticX XZ quantum spin chaifit For conve-

- . nience we now briefly summarize some of the known results
—0.02 [ em+g2/4co - for this model. It can be exactly solved by the Bethe
I % l ansatZ%3!The system is metallic fov<2J, i.e., there is no
—0.04 _ energy gap or long range order and so is a Luttinger liquid. It
is in an insulating charge-density-wave state\or 2J. The
metal-insulator transition is an infinite order, i.e., Kosterlitz-
L L Thouless, transition and has been discussed in detail by
0 0.5 1 15 = 25 Shankar?

Define a new variable. by

—0.06 |- —

g/w

\%
FIG. 3. Dependence of the ground-state energy peresiten cosu= 23 (22
the fermion-phonon coupling for t=0.1w. The solid lines are the

predictions of the small polaron modeec. Ill B). The error bars  \yhere 0< u< /2. AsV increases from 0 to the transition at
are smaller than the symbol size. All energies are in units.ofa) V=2J, u decreases fromz/2 to zero. The velocity of
€., iIs deduced from the intercept of the finite-size scaling plot of the, ' '

ground-state energgcompare Fig. L The dashed line is the po- charge excitations is given Bry

laron binding energy- g%/4w and clearly represents almost all of sin

the ground-state energgh) The polaron binding energy has been Up:’]TJ—M. (23
subtracted from the ground-state energy to make a more accurate

comparison with small polaron theory. As V increases from 0 to the transition \d&=2J, the veloc-

ity increases from 2 to wJ. However, as the coupling
increases] rapidly decreases and sg, rapidly decreases

This corresponds to the case of a narrow band of smaflcompare Fig. @)]. The Luttinger liquid exponerk , is
polarons’ The intersite hopping represents a small perturba-

B. Small polarons (g%>tw)

tion on the situation considered in the preceding section. Hir- 1
sch and Fradkihderived an effective Hamiltonighinvolv- KP:—M' (24)
ing the new fermion operat«itfr that creates a fermion at site 2( 1-—

a

i and changes the oscillator ground state from one centered

at — g, to one centered at g As V increases from 0 to the transition %t=2J, K, de-
creases from 1 to 1/fcompare Fig. b)].

i For V larger than 2 define a new variable by

g
Hefr=— NE_JZ (C{Ciy1+C1C)
hy ’ (25)
1 1 coshy= ——.
V2 (crci—g)( [1Civa— 5). (19 2J
The charge-density-wave order paramégris
The first term is the polaron binding enerfgompare Eq.
(18)] and dominates the ground-state ene(fig. 3). The
second term describes hopping between neighboring sites
with the bandwidth reduced by the overlap of the oscillator

ground state centered atg, and +q, The coupling dependence is shown in Fig(a)5 for
t=0.lw. The metal-insulator transition is Kosterlitz-
2
J=tex;{—(g) .
w

Thouless although it does not appear so on the scale shown.
(200  The energy gap in the insulating phase is

The third term describes the second-order pro¢etsrder e ="

t?/w) where a fermion hops to a neighboring site and back A—ZJsmhym:E_m cosimy) (27

again. This term is repulsive because this process is not pos-

sible if the neighboring site is occupied and turns out to be very smditompare Fig. &)].

1
me=§Hﬁ;: Jtanif(my). (26)

m=co
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FIG. 4. Dependence of Luttinger liquid parameters on the FIG. 5. Dependence on the fermion-phonon couplingf (a)
fermion-phonon coupling) for t=0.1w. The solid lines are the the square of the charge-density-wave order paranmejeand (b)
predictions of the small polaron mod@ec. 11l B). (&) The velocity  the energy gag\. The solid lines are the predictions of the small
of charge excitations,, is deduced from the slope of the finite-size polaron modelSec. Ill B). It predicts an infinite order transition at
scaling plot of the ground-state ener¢ggompare Fig. Land is  g=2.075. m2 was deduced from E@66) for a system of 16 sites.
normalized by the free fermion value.2The error bars are based The energy gap was deduced from tke= extrapolation of the
on the uncertainties in the least-squares fits such as shown in Fig. finite-size scaling plot of the hole ener@gompare Fig. 2 The fact
The decrease af,, with increasingg is due to the narrowing of the that both parameters become nonzerogorl.8 marks the transi-
bandwidth by polaronic effectgb) The correlation function expo- tion into the insulating phase.
nentK, is deduced from the ratio of the slopes of the finite-size
scaling plots in Figs. 1 and[ee Eq(11)]. The error bars are based parameter and the total energy of the system is minimized to
on the uncertainties in the least-squares fits to the finite-size scalingive the self-consistent equation
data(compare Figs. 1 and)2

/2 1
C. Free fermions (g=0) 1=At dk T. (31
° —72 [(2tcogk))?+A%]2

The fermion states are plane waves with energy disper-
sion The system is dimerized for all coupling strengths and for
weak coupling £ <1) the energy gap is

E(k)=—2tcogk). (29
-1
These states are occupied fat<kg= /2. Near the Fermi A=8texp (T - (32
surface ak= =k we haveE(k) = *2t(k+kg) and so the
Fermi velocity isv= 2t. The ground-state energy per site is The charge-density-wave order parameter is
=12 dk 2t B A _ 4 -1 33
ewz—ZtLﬁ/chos(k):—?. (29 Me=5 7= &P/ (33

The corrections to the mean-field equati8i), to next order
D. Adiabatic or mean-field limit (c<te™'*) in w\/A, were recently calculated.

It is assumed that the fluctuations of the lattice about its ,
dimerized value can be neglected and the quantum operatdy- THE GREEN'S FUNCTION MONTE CARLO METHOD

q; in the Hamiiltonian(l) is replaced by its mean value: At first we tried simulating the model using a discrete
gi—(q;)=(—1)'my. The fermionic Hamiltonian can then pasis of free phonon eigenstates on each site and employing
be diagonalized by a Bogoliubov transformation and the fery «stochastic truncatior™ technique appropriate to this ba-

mionic energies are sis. This method gave accurate results for small coupling
1 g, but not at or beyond the metal-insulator transition. In this
E(k)==[(2tcogk))?+ A?]z, (30) region the staggered displacememj becomes large, corre-

sponding to the presence of highly excited states in the free
whereA=g(2M w)l’zmp is the energy gap at the Fermi sur- phonon eigenstate basis. It was thus found more appropriate
face due to the dimerizatiod is then treated as a variational to use a continuous “position space” basis with variables
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{q;}, and use a different Monte Carlo technique as describednsemble of random walkers in configuration space, whose
below. time evolution mimics that of Eq.36).
To obtain good accuracy, one needs to introduce some
A. Ground-state energy variational guidance which can be done as follows. Let
) be a trial vector, e.g., some variational approximation

To simulate the model, we use a Green's function Mont o the true ground-state eigenvector with wave function:

Carlo (GFMC) method, as developed by Kalos and

collaborators>3® and applied to lattice gauge theory by G = (fq ntlw 43
Chin, Negele, and Kooni and others®=4° Let us review rdanh={{a.nH¥). “3
the method briefly. Then carry out a similarity transformation
The Hamiltonian for the Holstein modél) can be res- )
caled to the dimensionless form |®(7))—=|D" (7)) =W[D(7)), (44)
. . 1 HoH =¥ HV !, (45)
H= TS (elerrclaot S prai-gan- ) T

where the transformation matri¥ is diagonal in{q,n}

(34 space, with diagonal entrieE+({q,n}). The modified evo-
wheret=2t/w, §=229/w. lution equation will be
The imaginary-time Schobnger equation for the system , , ,

reads @' (7+A7))=expAr(Er—H"))|®'(7)).  (46)

P Let us now separate the fermion hopping term from the rest

- &—|(I)(q-))= (H=Ep|®(7)), (350  of the Hamiltonian, and write for small =

.
whereE; is a trial energy, representing a constant shiftin the ~ XA T(Er—H"))=exp(A 7(Er—Hg))[1—-A7H]
zero of energy. Evolving this equation for tinder yields +O(A ) (47)

|®(7+A7))=exp(A7(Ex—H))[D(7)). (380 [all our calculations from here on will only be accurate to

At large timesr the ground state will dominate: O(AT)].

Now H, transforms to
|® (7))~ coexp(— (Eq—Er) 7)|@g) asT—x,  (37)

(92
where|®,) is the (time-independentground state oH with Héz\lf{ —E —erV({q,n})}\IfTl
energyE,. T o
We shall work in a position-space representation, where 2 -1 21
. d T\ 9 i -
the wave function =—> | = +2¥; — - 5
T L9G dq; | JQ; aq;
d({qg,n},7)={{q,n}®(7) (39
{a.nt, 1) =({a.n}{d(7) VgD

and|{q,n}) represents an eigenstate of the positifm$ and

fermion occupation numbefs;} at each site. In this repre- T 2 . AL
H=Hg+H,, (39  as shown by Chin, Negele, and Koorifnyvhere the operator
p;=—i(d/dq;) acts on everything to the right of it as usual.
where . g .
Then the matrix element between position eigenstates corre-
) , sponding to the time-stefi r at iterationm can be writtef’
Hi= -1 (cfciiiteliic) (40)
! ({a,n}™ V]exp(A r(Ex—Hg))|{a,n}™)
is the fermion hopping term, and 1 1
_~ exg — — q_(m+1)_q_(m)
92 (4’7TAT)N;2 AN T5 ! !
Ho=—2 ——+V({a.n}) (41)
T JQ; 71(7\1,1_ 2 .
with S2A7U e —ArV; (HO\IIT)—ET])
+0O(A 7). (49)

1
V{a.nh)=2> oaf-3> Qi( ni— 5) (42
' ' Representing the wave functioh’ by a distribution of
as the “potential” term. random walkers in position space, the Monte Carlo simula-
The evolution equatio35) now has the form of a diffu- tion proceeds as follows. Each iteration corresponds to a
sion equation in configuration space. It is assumed that théme stepA r, and involves a sweep through each site in turn.
ground-state wave function can be chosen positive everyfhe first term in the exponenti&t9) is simulated by a dis-
where, and it is simulated by the density distribution of anplacement of each position variable
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\PT({qi n}(m+ l))

I
Ag=2A707 T4y, (50)
T oq Y({q,n}'™)

= ex;{ 4CQOE qi(n{™"Y— ni(m))}-
|

where y is randomly chosen from a Gaussian distribution (55)

with standard deviation/2A 7. The first term in(50) is the If the choice of trial function is a good one, afi} is

“drift” term, and the second is the “diffusion” term. The adjusted to be approximately equalEg, then we will have
second term in the exponenti@9) is simulated by multiply-

ing the “weight” of each walker by an equivalent amount. E =Et=E, (56)

We also need to simulate the fermion hopping term: so that the weight of each walker changes very little at each

(m+1)|r1_ / (m) time step, according to Ed51), so that the fluctuations in
{{a.ni (2= A7Ha]l{a.nt™) the weights are small, and consequently the accuracy of the

_ W({g,n}™Y) calculation is maximized.

= qayy an A e
Hh B. Expectation values
+c', 1) |[{g,nym). (51) _Ground“-state expectation val’yes can also be measured,
using a “secondary amplitude” technique discussed by

The factor in front brod . ahting” of th Kkers Hameret al394034| et (Q), be the expectation value to be
€ factor in front produces a Teweighting: of th€ Walkers o 5q,,red, where we assume the oper@ta diagonal in the

in th_e ens_emble; while the h_oppi_ng term itsel_f produces _nev¥q n} representation. Us® as a perturbation to the Hamil-
configurations on walkers with different fermion occupatlontor’“an.

numbers.
At the end of each iteration, the trial energy is adjusted "=H+xQ. (57)

to compensate for any change in the total weight of all walk- )
ers in the ensemble, and a “branching” process is carried hen by the Hellmann-Feynman theorem, the required ex-
out, so that walkers with weight greater thaay) 2 are split ~ Pectation value is given by
into two new walkers, while any two walkers with weight ,
less than(say) 0.5 are combined into one, chosen randomly :ﬁ

; : - : (Q)o (58
according to weight from the originals. This procedure of dx
“Runge smoothing®*' maximizes statistical accuracy by _ _
keeping the weights of all walkers within fixed bounds, Taylor expand the eigenvector and eigenvalue
while minimizing any fluctuations in the total weight due to 20 1 2
the branching process. When equilibrium is reached after |B(7,)=[@%(7)+X| (7)) +O(x7), (59
many sweeps through the lattice, the average value of the 1y — 1 2
trial energyE+ will give an estimate of the ground-state en- Eo(X)=Eo+xE"+0(x%), (60)
ergy Eq, from Eq.(37), and the density of the ensemble in substitute in the evolution equatig6) (ignoring any varia-
configuration space will be proportional tby¥';. Various tional guidance for the time beihgand equate powers of
corrections due to the finite time intervAlr have been ig- to obtain
nored in this discussion, and the linditr— 0 must be taken
in some fashion to eliminate such corrections. |®°(7+A7))=exp(Ar(Ex—H))|P%(7)) (62)

As a trial wave function, we choose a Gaussian, displace nd

by an amount, at each site depending on whether the site is

occupied or unoccupied: | @Y7+ A7))=expAT(Er—H))|PL(7))
+A7(E'=-Q)[®°(7)). (62)

x=0

\I’T({q,n})=eXp[—CE [ai—2d0(ni— )|, (52
i Equation(61) is just the original evolution equatio{36) for
the unperturbed system. Equatit8®) is an evolution equa-
tion of similar structure for the first-order wave function
|®1). Itis simulated by giving a “secondary” weight to each
walker in the ensemble, and evolving it according(6@),
E({q.n)=V7 HoWr=2 [07—dai(n—3)] while a secondary trial enerds; is used to estimatg?, and
' is adjusted after each iteration to compensate for any change
in the total of all secondary weights. At equilibrium, the
— 2 {4c[qi—2q0(ni—3)]°~2¢} (53  average value of. gives an estimate oE!, which is
' equivalent to{Q), by Eq. (58).

wherec and g, are variational parameters. Then the local
“trial energy”

and the “drift” term is

. V. RESULTS AND DISCUSSION
_ T
A =—4c[qi—2q0(ni—3)] (54) GFMC runs were performed for a range of different cou-

a .
G plings g/w at hopping parameter valuds-0.1lw, w, and
while the “reweighting factor” in Eq.(51) is 10w, for lattice sizes of 2, 4, 6, 8, and 16 sites. In each case,



53 QUANTUM MONTE CARLO STUDY OF THE ONE-DIMENSIONAL ... 9683

TABLE I. Monte Carlo results for different quantities for w andg=1.5» and for various system sizes.
The energies are in units @f and displacements in units of{w) ~*2.

Eo(N)/N E_1(N)—Eo(N) (qi(2n;—1)) (af) (Nini 4 mr2) (NiNi_14m2)

—1.143+ 0.001 1.158+ 0.004 0.313+ 0.005 0.748* 0.008 0.000+ 0.000 0.500+ 0.000
—0.895F 0.001 0.416+ 0.004 0.446*+ 0.001 0.864+ 0.004 0.260+ 0.001 0.120*+0.0004
—0.868t 0.001 0.268+ 0.009 0.470*= 0.005 0.883+ 0.007 0.217+ 0.001 0.244*= 0.001
—0.861+ 0.002 0.200+ 0.015 0.484* 0.002 0.902+ 0.003 0.240+ 0.002 0.229+ 0.001
16 —0.854- 0.001 0.064+ 0.027 0.488+ 0.004 0.904+ 0.005 0.247+ 0.002 0.246+ 0.002

oo AN Z

the variational parametersandqg [compare Eq(52)] were  E_;(N)—Ey(N) versus IN (compare Fig. 2 To allow for
adjusted to their optimum values by a series of trial runsthe corrections to scaling this was fitted to

Production runs typically employed an ensemble of 2000

walkers for 20 000 iterations. The first 2000 iterations were 1 b

discarded to allow for equilibrium, and the remainder were B _ U,

averaged over blocks of 1024 iterations before estimating the E-1(N)=Bo(N)=A+ 2K, N N (64)
error to minimize correlation effects. Calculations were per-

formed on a cluster of six HP735 workstations. A typical run
for 16 sites took 1-2 h of CPU time. Two different time steps
were used in each case, namelyr=0.005 and 0.01 at
t=0.1lw, A7=0.0005 and 0.001 at=w, and A7=0.001
and 0.002 at=10w. The results were then linearly extrapo-
lated toA 7=0.

The quantities measured were the ground-state er{@rgy
the half-filled sector, Eq(N), the energy gajto the “one
hole” sector with one fewer fermions E_;(N)—Eg(N),
and ground-state expectation values for the mean displac
ment(q;(2n;—1)), the mean square displaceméqf), and
two correlated fermion expectation valugsy;n;, ) and
(nin;_1,ns2), WhereN is the lattice size. The difference be-
tween these last two values provides an estimate of th
amount of “staggering,” or dimerization, in the fermion oc-
cupation numberqd.Compare Eq(65) below] A sample of
results is shown in Table I.

The charge velocityu, was extracted from a finite-size
scaling plot of the ground-state energy per &¢N)/N ver-

Again, the higher-order ter®(N~3) was chosen to be con-
sistent with known results for free fermions and tk&XZ
model with weak interactions. To extrat, we need to use
the value ofu, extracted earliefStrictly speaking Eq(64)
is only valid whenA =0 but we use\ as a parameter in our
fits to check that we are in the critical regime. Also, the
derivation of Eq.(64) requires particle-hole symmetry, i.e.,
E_1(N)=E1(N). We checked for several parameter values
ghat the Monte Carlo results were consistent with this.
Figure 4a) shows the dependence of the charge velocity
u, on the fermion-phonon coupling for t=0.1w. The re-
sults are in good agreement with Eq20) and (23) [solid
line in Fig. 4a)]. The charge velocity is significantly reduced
By polaronic band narrowing. The correlation exporiepis
shown in Fig. 4b) as a function of the fermion phonon cou-
pling. The dependence &, on the coupling is consistent
with the metallic phase being a Luttinger liquid. The fact that
K ,<1 indicates repulsive interactions in the Luttinger liquid.
K, is not plotted forg>1.5» because the relative error is

2 . . .
E:Salg[r;icirpﬁr?éef;'?; gcc%d;“gvtvofgﬂfﬁg)stgz||S QSR/ISI very large. This is because its determination depends on the
9 gt yalue of u, which has a very large relative error for

ture of our plots, because we used only moderately large . B
system sizesN = 2, 4, 6, 8, and 16 site¢she data were g>1.50 [see Fig. 4)]. Fort=0.1w, Eqs.(20) and(21), for

fitted to the small polaronic model .together with thg criterion

V=2J, can be used to determine that the transition from the
Eo(N) T, a Luttinger liquid to the insulating phase occurs when

N :E“’_WJFW' (63) g=2.075w. . _
The charge-density-wave order parametgr, defined by

The correction-to-scaling ter®(N~%) matches that pre- (2), must be zero for any finite-size system. However, in the
dicted to hold for thexXZ model?®3! at least for weak in- dimerized phase we also have fofarge
teractions(i.e., smallw). For stronger interactions the expo-
nent is interaction dependent. At the metal-insulator TABLE Il. Comparison of Monte Carlo results with known re-

transition the correction-to-scaling term ®((NINN)"2).  sults for free fermions. The ground-state energy per site of the in-
However, we found that using such a form did not improvefinite system,e.., and the velocity of charge excitations,, are
the quality of the least square fits near the transition. normalized to their free fermion values. The correlation exponent

For free fermions §=0) the values ofe., andu, ex- K, is one for free fermions.
tracted from the fits were found to agree well with the known

analytic resultse,=—2t/7 and u,=2t (Table I). For t TEs Y, K,
t=0.1w the dependence of the ground-state energy on the 2t 2t

coupling is in good agreement with small polaron theoryO 1 0.999+ 0.001 098+ 003 1.00= 0.06
(Fig. 3. 1 1.000= 0.001  0.96+ 0.02  1.00+ 0.04

The energy gap\ of the infinite system was extracted

- f . 0.999=+ 0.003 1.00= 0.01 0.95* 0.02
from finite-size scaling plots of the hole energy
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FIG. 6. Dependence on the fermion-phonon couplingf the
mean lattice displaceme(x;(2n;—1)) and the mean square lattice
displacementq?) for t=0.1w and a system of 16 sites. The dis-
placements are in units oMw) ™2 The solid lines are the pre-
dictions for localized fermiongSec. Il A).

1 )
<nini+j>:Z+(_1)lm§ (65

and so

1
m§=§|<nini+N/2>_<nini—1+N/2>|' (66

This equation was used to determim@ from the results for
N=16 sites.

mg for t=0.1w. The quantum Monte Carlo data suggest

there is a transition ne@=1.8w. This is consistent with the
small polaron theory prediction gf=2.07%v» since the latter
theory is only valid to order M~ wtw/g?, i.e., about 10%.
Figure 8b) shows the energy gap as a function of coupling.
It is not possible to detect the transition in the energy gap
data. Small polaron theory predicts an energy gap smaller
than typical uncertainties in the Monte Carlo data.

Figure 6 shows the coupling strength dependence of the
mean lattice displacemefx;(2n;—1)) and the mean square
lattice displacementq?) for t=0.1w and a system of 16
sites. The results are very close to that anticipated for local-
ized fermions[compare Eqs(16) and (17)]. Fort=w and
t=10w the mean lattice displacement was also nonzero, i.e.,
the ground state was polaronic for all couplings, although the
magnitude of the displacement decreased significantly with
increasingt. Similar trends are seen for the Holstein model
on two sites*?

For t=w the charge velocity is again reduced by po-
laronic effects [Fig. 7(a)] but not by as much as for
t=0.1lw. The interactions in the Luttinger liquid are now
attractive €,>1). Both the order parameter and the energy
gap show a transition to the insulating phase rgar.7o
(Fig. 8.
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FIG. 7. Same as Fig. 4 but with= w. The fact thaK , depends
ong and is larger than 1 is consistent with the metallic phase being
a Luttinger liquid with attractive interactions.

For t=10w there are only small changes in the charge
velocity and correlation function exponek, with increas-
ing g/w (Fig. 9. The order parametan, and energy gap
A become nonzero abogt=3.5w (Fig. 10. This is quite
different from what is anticipated by Hirsch and Fradkin.
They performed simulations frort=0.50 up to t=3.1lw.
They found a smooth decrease in the critical value of
)\C=g§/mot with increasingt/ w, and anticipated a smooth
crossover ton,=0 for w=0. Extrapolating their results to
t=10w gives\.~0.01 andg.~0.6w compared to our value
of g.=3.50w. Note that the ratio of the energy gap to its
mean field valudFig. 1Qb)] is much smaller than the ratio
of the charge-density-wave order parameter to its mean field
value. This is consistent with work showing that the zero
boint motion of the lattice can reduce the magnitude of the

T
0zl %(a)_'
t=w X:
o1 ]
=X ]
L x ]
ok e DI = S ]
I e R I A
2L (b) ]
1.5 —
3 i
S s
0.5 -
Iy
ot . “T“*"T“fz{gr “““ n
4} 0.5 1 1.5 2 2.5

g/w

FIG. 8. Same as Fig. 5 but with= . The solid curves are the
predictions of mean field theoriBec. Il D).



FIG. 9. Same as Fig. 4 but with= 10w. Note that the vertical

scale is expanded compared to Figs. 4 and 7.
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FIG. 11. Phase diagram showing the boundary between the me-
tallic and insulating phase. The solid curve is the prediction of small
polaron theory and th¥XZ model(Sec. Ill B). The crosses are the
results of this study and the solid squares the results of Hirsch and
Fradkin (Ref. 9.

order parameter by a small amount but produce a substantial

subgap tail in the fermionic density of stafed=or example,

results in Figs. 1 and 3 of Ref. 5 on the continuum version ofyoints deduced from Figs. 5, 8, and 10. It should be stressed

the SSH model show that for one set of parameter values th@at there is some ambiguity in determining the phase bound-

energy gap can be about 60% of the mean-field value whilgry, On the one hand, according to mean-field theory the

the order parameter is only reduced by about)5%. transition occurs ag=0 but the solid curves in Figs. 8 and
The phase boundary as a functionték andg/w be- 10 suggest that the transition is only detectablg-a0.6w

tween the metallic and insulating phases is shown in Fig. 11and g~ 2w, respectively. On the other hand, for0.1w

The solid curve is the boundary predicted by small polarorsmall polaron theory and thexXZ model predict a

theory and thexXZ model (Sec. lll B). This curve is only  Kosterlitz-Thouless transition aj=2.075» and the solid

shown fort<w since this model is only valid in the strong curve in Fig. %a) shows there is very little ambiguity asso-

coupling limit (t<g?w). The crosses are the boundary ciated with this transition point. For comparison the bound-
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FIG. 10. Same as Fig. 5 but with= 10w. The solid curves are

the predictions of mean field theo($gec. 11l D).

4

ary points found by Hirsch and FradRitFig. 11 in their
papej are also shown. Far=w there is a discrepancy be-
tween our results and theirs: they observe the transition at
smaller coupling than we do. We have no explanation for this
discrepancy.

VI. CONCLUSIONS

We have shown that the Green’s function Monte Carlo
technique can be successfully used to investigate a one-
dimensional fermion-phonon model. As far as we are aware
this is the first application of this technique to this important
class of models. The results were of sufficiently high preci-
sion that a finite-size scaling analysis of the results could be
performed. For the case of free fermiong=0) and the
strong coupling limit §>>tw) our results agree with known
analytic results.

Our results are consistent with the following physical pic-
ture of the Holstein model of spinless fermions at half-filling.
For sufficiently weak coupling the system is in a metallic,
i.e., gapless phase, with the properties of a Luttinger liquid,
i.e., the exponents associated with the decay of correlation
functions depend on the coupling strength. The fermions are
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polaronic, i.e., there is a finite phonon displacengnasso- This work suggests several possible future investigations
ciated with the occupation of a site by a fermion and thewhich we plan to pursue(@ The adiabatic region of the
velocity of excitationsu,,, is reduced below the free elec- phase diagramt& w), in which we found a larger region of
tron value 2. As the coupling increases antf w decreases the metallic phase than anticipated by Hirsch and Fradkin,
de increases andi, (which is a measure of the polaronic needs to be investigated furthé) The relative importance
bandwidth decreases. Qualitatively similar behavior is seernof superconducting and charge-density-wave correlations
for the two-site Holstein modéf. In the antiadiabatic limit should be investigated in the region of the metallic phase for
(t<w) the effective interaction between polarons is repul-which the effective interactions are attractive). Alternative
sive and for strong coupling the Holstein model can beyariational wave functions, such as the double Gaussian pro-
mapped onto theXXZ antiferromagnetic spin chaifSec.  posed by Shore and Sand@rould be used instead of the
Il B). However, ast/w increases the effective interaction single Gaussiari52) used for the variational guidance. Fi-

become; attractive. This is indicated by a change in the valule[a”y, we plan to use this method to investigate the Holstein
of the stiffness constart, from values less than 1 to values | 4. \vith spin, and away from half-filling, as well as the

larger than 1. \ . .

When the fermion-phonon coupling is sufficiently large Su-Schrieffer-Heeger model, and the spin-Peierls problem.
the system undergoes a transition to an insulating phase, i.e.,
an energy gap opens at the Fermi surface. There is long-
range charge-density-wave order and a dimerization of the

phonons in this phase. Our results for w andt=10w are ACKNOWLEDGMENTS
inconsistent with the metal-insulator transition being infinite '
order sinceK , does not equal the universival vafgef 0.5 Work at UNSW was supported by the Australian Research
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Avignon'! and by Wu, Huang, and Stffor certain param- by the Centre for Advanced Numerical Computation in En-

eter values. gineering and SciencéCANCES at UNSW.

*Electronic address: ross@newt.phys.unsw.edu.au 12¢, Q. Wu, Q. F. Huang, and X. Sun, Phys. Rev5B 15 683

1G. Griner, Density Waves in SolidéAddison-Wesley, Redwood (1995.
City, 1994. 133, Voit and H. J. Schulz, Phys. Rev.3, 968 (1987.

2R. PeierlsQuantum Theory of Solid®©xford University, Oxford,  14J. R. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Re48,B
1955, p. 108. 6302(1993, and references therein.

3T. Holstein, Ann. Phys8, 325, 343(1959. 15p Niyaz, J. E. Gubernatis, R. T. Scalettar, and C. Y. Fong, Phys.

4A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Rev. B48, 16 011(1993, and references therein.
Mod. Phys.60, 781(1988. 18F, Marsiglio, Physica 44, 21 (1995.

°R. H. McKenzie and J. W. Wilkins, Phys. Rev. Lef9, 1085 1A S. Alexandrov, V. V. Kabanov, and D. K. Ray, Phys. Revi®
(1992, and references therein. 9915(1994), and references therein.

K. Kim, R. H. McKenzie, and J. W. Wilkins, Phys. Rev. Left, 183, Voit, Rep. Prog. Phy&8, 977 (1995.
4015(1993. 19M. J. Rice and E. J. Mele, Phys. Rev.28, 1339(1982.

"F.H. Long, S. P. Love, B. |. Swanson, and R. H. McKenzie, Phys2°M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. L&,
Rev. Lett.71, 762(1993; L. Degiorgi, St. Thieme, B. Alavi, G. 3651(1993, and references therein.
Griner, R. H. McKenzie, K. Kim, and F. Levy, Phys. RevBB,  2'E. Fradkin,Field Theories of Condensed Matter Systeddi-
5603(1995, and references therein. son Wesley, Redwood City, 1991

8W. P. Su, Solid State Commu#2, 497(1982; E. Fradkin and J.  22G. Benfatto, G. Gallavotti, and J. L. Lebowitz, Helv. Phys. Acta
E. Hirsch, Phys. Rev. BR7, 1680 (1983; D. Schmeltzer, R. 68, 312(1995.

Zeyher, and W. Hankebid. 33, 5141(1986; A. Auerbach and  23H. B. Shore and L. M. Sander, Phys. Rev7B4537(1973.

S. Kivelson,ibid. 33, 8171(1986; Z. B. Su, Y. X. Wang, and L.~ 2*B. Gerlach and H. [wen, Rev. Mod. Phys63, 63 (1991).

Yu, Commun. Theor. PhygBeijing) 6, 313 (1986; J. Yu, H.  25F, D. M. Haldane, Phys. Rev. Le#t5, 1358(1980.

Matsuoka, and W. P. Su, Phys. Rev3B 10 367(1988; G. C. 2|, Affleck, Phys. Rev. Lett56, 746 (1986; H. W. J. Blae, J. L.
Psaltakis and N. Papanicolaou, Solid State Comn).87 Cardy, and M. P. Nightingalebid. 56, 742 (1986.

(1992; A. Takahashi, Phys. Rev. 86, 11 550(1992; H. Zheng,  27J. L. Cardy, J. Phys. A7, L385 (1984).

ibid. 50, 6717(1994; C. Q. Wu, Q. F. Huang, and X. Suibid. = 28G. D. Mahan,Many-Particle Physigs2nd ed.(Plenum, New

52, 7802(1995. York, 1990, p. 285ff.

°J. E. Hirsch and E. Fradkin, Phys. Rev.28, 4302(1983. To 2Similar calculations were made by G. Beni, P. Pincus, and J.
compare our results with theirs seK=Mw? and Kanamori[Phys. Rev. B10, 1896 (1974] for the case of elec-
r=g(2Mw)?. trons with spin.

10c. Bourbonnais and L. G. Caron, J. PhyErance 50, 2751  °°C. N. Yang and C. P. Yang, Phys. R&60, 321(1966); 150, 327
(1989. (1966.

1H. Zheng, D. Feinberg, and M. Avignon, Phys. Rev38 9405  3!C. J. Hamer, J. Phys. A9, 3335(1986.
(1988. 32R. Shankar, Int. J. Mod. Phys. & 2371(1990.



53 QUANTUM MONTE CARLO STUDY OF THE ONE-DIMENSIONAL ...

33R. J. Baxter,Exactly Solved Models in Statistical Mechanics

(Academic, London, 1982

34p, F. Price, C. J. Hamer, and D. O’Shaughnessy, J. Phys, A
2855(1993.

35D, M. Ceperley and M. H. Kalos, itMonte Carlo Methods in
Statistical Mechanigsedited by K. Binder(Springer-Verlag,
New York, 1979, p. 145.

38M. H. Kalos, D. Levesque, and L. Verlet, Phys. RevoA2178
(1974).

37s. A. Chin, J. W. Negele, and S. E. Koonin, Ann. Ph{s.Y.)

9687

157, 140(1984).

38D, W. Heys and D. R. Stump, Phys. Rev.28, 2067 (1983.

39C. J. Hamer, K. C. Wang, and P. F. Price, Phys. Re60D4693
(1994.

40C. J. Hamer, M. Sheppeard, Z. Weihong, and D. $Sehunpub-
lished.

41K. J. Runge, Phys. Rev. B5, 7229(1992.

42M. Sonnek, T. Frank, and M. Wagner, Phys. Rev4® 15 637
(1994.



