44 research outputs found

    Case study on the efficacy of a lanthanum-enriched clay (PhoslockÂź) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands)

    Get PDF
    Lake Het Groene Eiland was created in the beginning of 2008 by construction of dikes for isolating it from the surrounding 220-ha water body. This so-called claustrum of 5 ha was treated using lanthanum-modified clay (PhoslockÂź) to control eutrophication and mitigate cyanobacterial nuisance. Cyanobacteria chlorophyll-a were significantly lower in the claustrum than those in the reference water body, where a massive bloom developed in summer, 2008. However, PO4-P and TP did not statistically differ in these two waters. TN and NO3-N were significantly lower in the claustrum, where dense submerged macrophytes beds developed. Lanthanum concentrations were elevated after the applications of the modified clay in the claustrum, but filterable lanthanum dropped rapidly below the Dutch standard of 10.1 ÎŒg l−1. During winter, dozens of Canada geese resided at the claustrum. Geese droppings contained an average of 2 mg PO4-P g−1 dry weight and 12 mg NH3-N g−1 dry weight and might present a growing source of nutrients to the water. Constructing the claustrum enabled unrestricted bathing in subsequent three summers, as no swimming bans had to be issued due to cyanobacteria blooms. However, the role of the modified clay in this positive outcome remains unclear, and longevity of the measures questionable.

    Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere

    Get PDF
    Mercury (Hg), a global contaminant, is emitted mainly in its elemental form Hg0 to the atmosphere where it is oxidized to reactive HgII compounds, which efficiently deposit to surface ecosystems. Therefore, the chemical cycling between the elemental and oxidized Hg forms in the atmosphere determines the scale and geographical pattern of global Hg deposition. Recent advances in the photochemistry of gas-phase oxidized HgI and HgII species postulate their photodissociation back to Hg0 as a crucial step in the atmospheric Hg redox cycle. However, the significance of these photodissociation mechanisms on atmospheric Hg chemistry, lifetime, and surface deposition remains uncertain. Here we implement a comprehensive and quantitative mechanism of the photochemical and thermal atmospheric reactions between Hg0, HgI, and HgII species in a global model and evaluate the results against atmospheric Hg observations. We find that the photochemistry of HgI and HgII leads to insufficient Hg oxidation globally. The combined efficient photoreduction of HgI and HgII to Hg0 competes with thermal oxidation of Hg0, resulting in a large model overestimation of 99% of measured Hg0 and underestimation of 51% of oxidized Hg and ∌66% of HgII wet deposition. This in turn leads to a significant increase in the calculated global atmospheric Hg lifetime of 20 mo, which is unrealistically longer than the 3–6-mo range based on observed atmospheric Hg variability. These results show that the HgI and HgII photoreduction processes largely offset the efficiency of bromine-initiated Hg0 oxidation and reveal missing Hg oxidation processes in the troposphere

    Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition

    Get PDF
    Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before deposition to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with deposition, thereby modifying the magnitude and pattern of Hg deposition. Global Hg models have postulated that Hg(II) reduction in the atmosphere occurs through aqueous-phase photoreduction that may take place in clouds. Here we report that experimental rainfall Hg(II) photoreduction rates are much slower than modelled rates. We compute absorption cross sections of Hg(II) compounds and show that fast gas-phase Hg(II) photolysis can dominate atmospheric mercury reduction and lead to a substantial increase in the modelled, global atmospheric Hg lifetime by a factor two. Models with Hg(II) photolysis show enhanced Hg(0) deposition to land, which may prolong recovery of aquatic ecosystems long after Hg emissions are lowered, due to the longer residence time of Hg in soils compared with the ocean. Fast Hg(II) photolysis substantially changes atmospheric Hg dynamics and requires further assessment at regional and local scales

    Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system

    Get PDF
    The cryosphere, which comprises a large portion of Earth’s surface, is rapidly changing as a consequence of global climate change. Ice, snow, and frozen ground in the polar and alpine regions of the planet are known to directly impact atmospheric composition, which for example is observed in the large influence of ice and snow on polar boundary layer chemistry. Atmospheric inputs to the cryosphere, including aerosols, nutrients, and contaminants, are also changing in the anthropocene thus driving cryosphere-atmosphere feedbacks whose understanding is crucial for understanding future climate. Here, we present the Cryosphere and ATmospheric Chemistry initiative (CATCH) which is focused on developing new multidisciplinary research approaches studying interactions of chemistry, biology, and physics within the coupled cryosphere – atmosphere system and their sensitivity to environmental change. We identify four key science areas: (1) micro-scale processes in snow and ice, (2) the coupled cryosphere-atmosphere system, (3) cryospheric change and feedbacks, and (4) improved decisions and stakeholder engagement. To pursue these goals CATCH will foster an international, multidisciplinary research community, shed light on new research needs, support the acquisition of new knowledge, train the next generation of leading scientists, and establish interactions between the science community and society

    Oral Contraceptive Use in BRCA1 and BRCA2 Mutation Carriers: Absolute Cancer Risks and Benefits.

    Get PDF
    BACKGROUND: To help BRCA1 and 2 mutation carriers make informed decisions regarding use of combined-type oral contraceptive preparation (COCP), absolute risk-benefit estimates are needed for COCP-associated cancer. METHODS: For a hypothetical cohort of 10 000 women, we calculated the increased or decreased cumulative incidence of COCP-associated (breast, ovarian, endometrial) cancer, examining 18 scenarios with differences in duration and timing of COCP use, uptake of prophylactic surgeries, and menopausal hormone therapy. RESULTS: COCP use initially increased breast cancer risk and decreased ovarian and endometrial cancer risk long term. For 10 000 BRCA1 mutation carriers, 10 years of COCP use from age 20 to 30 years resulted in 66 additional COCP-associated cancer cases by the age of 35 years, in addition to 625 cases expected for never users. By the age of 70 years such COCP use resulted in 907 fewer cancer cases than the expected 9093 cases in never users. Triple-negative breast cancer estimates resulted in 196 additional COCP-associated cases by age 40 years, in addition to the 1454 expected. For 10 000 BRCA2 mutation carriers using COCP from age 20 to 30 years, 80 excess cancer cases were estimated by age 40 years in addition to 651 expected cases; by the age of 70 years, we calculated 382 fewer cases compared with the 6156 cases expected. The long-term benefit of COCP use diminished after risk-reducing bilateral salpingo-oophorectomy followed by menopausal hormone therapy use. CONCLUSION: Although COCP use in BRCA1 and BRCA2 mutation carriers initially increases breast, ovarian, and endometrial cancer risk, it strongly decreases lifetime cancer risk. Risk-reducing bilateral salpingo-oophorectomy and menopausal hormone therapy use appear to counteract the long-term COCP-benefit.Pink-Ribbon/Dutch-Cancer-Society (2014-187.WO76) and Transcan-JT (2012/Cancer-12-054
    corecore