55 research outputs found

    Serving Two Masters: Moravian Brethren in Germany and North Carolina, 1727-1801

    Get PDF
    The eighteenth century was a time of significant change in the perception of marriage and family relations, the emphasis of reason over revelation, and the spread of political consciousness. The Unity of the Brethren, known in America as Moravians, experienced the resulting tensions firsthand as they organized their protective religious settlements in Germany. A group of the Brethren who later settled in Salem, North Carolina, experienced the stresses of cultural and generational conflict when its younger members came to think of themselves as Americans. The Moravians who first immigrated to America actively maintained their connections to those who remained in Europe and gave them the authority for deciding religious, social, and governmental issues. But, as the children born in Salem became acclimated to more freedoms, particularly in the wake of the American Revolution, a series of disputes intensified the problems of transatlantic governance. While the group\u27s leadership usually associated Enlightenment principles with rebellion and religious skepticism, the younger Brethren were drawn to its message of individual autonomy and creative expression. Elisabeth Sommer traces the impact of this generational and cultural change among Moravians on both sides of the Atlantic and examines the resulting debate over the definition of freedom and faith. An important contribution to an expanding literature whose base in archival work on both sides of the Atlantic reveals the Moravian struggles to be faithful to their deepest commitments. —A.G. Roeber, Pennsylvania State University The international Moravian story is charming and powerful. . . . We are indebted to Sommer for arduous and skillful work in passing on their story to us. —American Historical Review Provides a more profound understanding of what the Moravians believed, why they came, and the process by which they increasingly accommodated to the American world. —Appalachian Quarterly A detailed and thought-provoking narrative of declension and the formation of new political identities. —Georgia Historical Quarterly Creative and well-researched. . . . Will interest a variety of scholars. —H-Net Reviews A good book that tells us much about the development of American sensibilities in an immigrant religious group and does so with a helpful transatlantic perspective. —Journal of American History Contributes significantly to our understanding of the evolution of Moravian communities and of the forces that influenced their future direction. —Journal of Southern History Gives additional depth to our comparative understanding of the social as well as the religious experience of people on two sides of the Atlantic in the eighteenth century. —Journal of the Early Republic Should prove beneficial not only to those primarily interested in Moravian studies but also to those whose field includes wider social history concerns. —North Carolina Historical Review A valuable contribution not only to the field of early American religious history, but also to the sociology of religion and Moravian and Pietist studies. —Religious Studies Review Represents the best trends in transatlantic history. . . . Invites us to search for other religious cables binding early America to a wider world. —William and Mary Quarterlyhttps://uknowledge.uky.edu/upk_history_of_religion/1004/thumbnail.jp

    Numerical Quality Control for DFT-based Materials Databases

    Get PDF
    Electronic-structure theory is a strong pillar of materials science. Many different computer codes that employ different approaches are used by the community to solve various scientific problems. Still, the precision of different packages has only recently been scrutinized thoroughly, focusing on a specific task, namely selecting a popular density functional, and using unusually high, extremely precise numerical settings for investigating 71 monoatomic crystals. Little is known, however, about method- and code-specific uncertainties that arise under numerical settings that are commonly used in practice. We shed light on this issue by investigating the deviations in total and relative energies as a function of computational parameters. Using typical settings for basis sets and k-grids, we compare results for 71 elemental and 63 binary solids obtained by three different electronic-structure codes that employ fundamentally different strategies. On the basis of the observed trends, we propose a simple, analytical model for the estimation of the errors associated with the basis-set incompleteness. We cross-validate this model using ternary systems obtained from the NOMAD Repository and discuss how our approach enables the comparison of the heterogeneous data present in computational materials databases.Comment: 7 pages, 4 figure

    A common molecular mechanism for cognitive deficits and craving in alcoholism

    Get PDF
    Alcohol-dependent patients commonly show impairments in executive functions that facilitate craving and can lead to relapse. The medial prefrontal cortex, a key brain region for executive control, is prone to alcohol-induced neuroadaptations. However, the molecular mechanisms leading to executive dysfunction in alcoholism are poorly understood. Here using a bi-directional neuromodulation approach we demonstrate a causal link for reduced prefrontal mGluR2 function and both impaired executive control and alcohol craving. By neuron-specific prefrontal knockdown of mGluR2 in rats, we generated a phenotype of reduced cognitive flexibility and excessive alcohol-seeking. Conversely, restoring prefrontal mGluR2 levels in alcohol-dependent rats rescued these pathological behaviors. Also targeting mGluR2 pharmacologically reduced relapse behavior. Finally, we developed a FDG-PET biomarker to identify those individuals that respond to mGluR2-based interventions. In conclusion, we identified a common molecular pathological mechanism for both executive dysfunction and alcohol craving, and provide a personalized mGluR2-mechanism-based intervention strategy for medication development of alcoholism

    Species-specific responses of Late Quaternary megafauna to climate and humans

    Get PDF
    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.This paper is in the memory of our friend and colleague Dr. Andrei Sher, who was a major contributor of this study. Dr Sher died unexpectedly, but his major contributions to the field of Quaternary science will be remembered and appreciated for many years to come. We are grateful to Dr. Adrian Lister and Dr. Tony Stuart for guides and discussions. Thanks to Tina B. Brandt, Dr. Bryan Hockett and Alice Telka for laboratory help and samples and to L. Malik R. Thrane for his work on the megafauna locality database. Data taken from the Stage 3 project was partly funded by Grant #F/757/A from the Leverhulme Trust, together with a grant from the McDonald Grants and Awards Fund. We acknowledge the Danish National Research Foundation, the Lundbeck Foundation, the Danish Council for Independent Research and the US National Science Foundation for financial suppor

    A new clinico-pathological classification system for mesial temporal sclerosis

    Get PDF
    We propose a histopathological classification system for hippocampal cell loss in patients suffering from mesial temporal lobe epilepsies (MTLE). One hundred and seventy-eight surgically resected specimens were microscopically examined with respect to neuronal cell loss in hippocampal subfields CA1–CA4 and dentate gyrus. Five distinct patterns were recognized within a consecutive cohort of anatomically well-preserved surgical specimens. The first group comprised hippocampi with neuronal cell densities not significantly different from age matched autopsy controls [no mesial temporal sclerosis (no MTS); n = 34, 19%]. A classical pattern with severe cell loss in CA1 and moderate neuronal loss in all other subfields excluding CA2 was observed in 33 cases (19%), whereas the vast majority of cases showed extensive neuronal cell loss in all hippocampal subfields (n = 94, 53%). Due to considerable similarities of neuronal cell loss patterns and clinical histories, we designated these two groups as MTS type 1a and 1b, respectively. We further distinguished two atypical variants characterized either by severe neuronal loss restricted to sector CA1 (MTS type 2; n = 10, 6%) or to the hilar region (MTS type 3, n = 7, 4%). Correlation with clinical data pointed to an early age of initial precipitating injury (IPI < 3 years) as important predictor of hippocampal pathology, i.e. MTS type 1a and 1b. In MTS type 2, IPIs were documented at a later age (mean 6 years), whereas in MTS type 3 and normal appearing hippocampus (no MTS) the first event appeared beyond the age of 13 and 16 years, respectively. In addition, postsurgical outcome was significantly worse in atypical MTS, especially MTS type 3 with only 28% of patients having seizure relief after 1-year follow-up period, compared to successful seizure control in MTS types 1a and 1b (72 and 73%). Our classification system appears suitable for stratifying the clinically heterogeneous group of MTLE patients also with respect to postsurgical outcome studies

    Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Down syndrome (DS; trisomy 21) is the most common genetic cause of mental retardation in the human population and key molecular networks dysregulated in DS are still unknown. Many different experimental techniques have been applied to analyse the effects of dosage imbalance at the molecular and phenotypical level, however, currently no integrative approach exists that attempts to extract the common information.</p> <p>Results</p> <p>We have performed a statistical meta-analysis from 45 heterogeneous publicly available DS data sets in order to identify consistent dosage effects from these studies. We identified 324 genes with significant genome-wide dosage effects, including well investigated genes like <it>SOD1</it>, <it>APP</it>, <it>RUNX1 </it>and <it>DYRK1A </it>as well as a large proportion of novel genes (N = 62). Furthermore, we characterized these genes using gene ontology, molecular interactions and promoter sequence analysis. In order to judge relevance of the 324 genes for more general cerebral pathologies we used independent publicly available microarry data from brain studies not related with DS and identified a subset of 79 genes with potential impact for neurocognitive processes. All results have been made available through a web server under <url>http://ds-geneminer.molgen.mpg.de/</url>.</p> <p>Conclusions</p> <p>Our study represents a comprehensive integrative analysis of heterogeneous data including genome-wide transcript levels in the domain of trisomy 21. The detected dosage effects build a resource for further studies of DS pathology and the development of new therapies.</p

    Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes

    Get PDF
    Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P < 5 x 10(-8)) with GDM, mapping to/near MTNR1B (P = 4.3 x 10(-54)), TCF7L2 (P = 4.0 x 10(-16)), CDKAL1 (P = 1.6 x 10(-4)), CDKN2A-CDKN2B (P = 4.1 x 10(-9)) and HKDC1 (P = 2.9 x 10(-8)). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.Peer reviewe

    Identification of Disparities in Personalized Cancer Care—A Joint Approach of the German WERA Consortium

    Get PDF
    (1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in Würzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore