49 research outputs found

    Engineering of a complex bone tissue model with endothelialised channels and capillary-like networks

    Get PDF
    In engineering of tissue analogues, upscaling to clinically-relevant sized constructs remains a significant challenge. The successful integration of a vascular network throughout the engineered tissue is anticipated to overcome the lack of nutrient and oxygen supply to residing cells. This work aimed at developing a multiscale bone-tissue-specific vascularisation strategy. Engineering pre-vascularised bone leads to biological and fabrication dilemmas. To fabricate channels endowed with an endothelium and suitable for osteogenesis, rather stiff materials are preferable, while capillarisation requires soft matrices. To overcome this challenge, gelatine-methacryloyl hydrogels were tailored by changing the degree of functionalisation to allow for cell spreading within the hydrogel, while still enabling endothelialisation on the hydrogel surface. An additional challenge was the combination of the multiple required cell-types within one biomaterial, sharing the same culture medium. Consequently, a new medium composition was investigated that simultaneously allowed for endothelialisation, capillarisation and osteogenesis. Integrated multipotent mesenchymal stromal cells, which give rise to pericyte-like and osteogenic cells, and endothelial-colony-forming cells (ECFCs) which form capillaries and endothelium, were used. Based on the aforementioned optimisation, a construct of 8 × 8 × 3 mm, with a central channel of 600 µm in diameter, was engineered. In this construct, ECFCs covered the channel with endothelium and osteogenic cells resided in the hydrogel, adjacent to self-assembled capillary-like networks. This study showed the promise of engineering complex tissue constructs by means of human primary cells, paving the way for scaling-up and finally overcoming the challenge of engineering vascularised tissues

    Platelet-Activating Factor Induces TLR4 Expression in Intestinal Epithelial Cells: Implication for the Pathogenesis of Necrotizing Enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF), bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs) are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC) lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line). PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC

    Incidence of Sarcoma Histotypes and Molecular Subtypes in a Prospective Epidemiological Study with Central Pathology Review and Molecular Testing

    Get PDF
    International audienceBACKGROUND: The exact overall incidence of sarcoma and sarcoma subtypes is not known. The objective of the present population-based study was to determine this incidence in a European region (Rhone-Alpes) of six million inhabitants, based on a central pathological review of the cases. METHODOLOGY/PRINCIPAL FINDINGS: From March 2005 to February 2007, pathology reports and tumor blocks were prospectively collected from the 158 pathologists of the Rhone-Alpes region. All diagnosed or suspected cases of sarcoma were collected, reviewed centrally, examined for molecular alterations and classified according to the 2002 World Health Organization classification. Of the 1287 patients screened during the study period, 748 met the criteria for inclusion in the study. The overall crude and world age-standardized incidence rates were respectively 6.2 and 4.8 per 100,000/year. Incidence rates for soft tissue, visceral and bone sarcomas were respectively 3.6, 2.0 and 0.6 per 100,000. The most frequent histological subtypes were gastrointestinal stromal tumor (18%; 1.1/100,000), unclassified sarcoma (16%; 1/100,000), liposarcoma (15%; 0.9/100,000) and leiomyosarcoma (11%; 0.7/100,000). CONCLUSIONS/SIGNIFICANCE: The observed incidence of sarcomas was higher than expected. This study is the first detailed investigation of the crude incidence of histological and molecular subtypes of sarcomas

    Age-specific burden of cervical cancer associated with HIV: A global analysis with a focus on sub-Saharan Africa

    Get PDF
    HIV substantially worsens human papillomavirus (HPV) carcinogenicity and contributes to an important population excess of cervical cancer, particularly in sub-Saharan Africa (SSA). We estimated HIV- and age-stratified cervical cancer burden at a country, regional, and global level in 2020. Proportions of cervical cancer a) diagnosed in women living with HIV (WLHIV), and b) attributable to HIV, were calculated using age-specific estimates of HIV prevalence (UNAIDS) and relative risk. These proportions were validated against empirical data and applied to age-specific cervical cancer incidence (GLOBOCAN 2020). HIV was most important in SSA, where 24.9% of cervical cancers were diagnosed in WLHIV, and 20.4% were attributable to HIV (vs 1.3% and 1.1%, respectively, in the rest of the world). In all world regions, contribution of HIV to cervical cancer was far higher in younger women (as seen also in empirical series). For example, in Southern Africa, where more than half of cervical cancers were diagnosed in WLHIV, the HIV-attributable fraction decreased from 86% in women ≤34 years to only 12% in women ≥55 years. The absolute burden of HIV-attributable cervical cancer (approximately 28 000 cases globally) also shifted towards younger women: in Southern Africa, 63% of 5341 HIV-attributable cervical cancer occurred in women <45 years old, compared to only 17% of 6901 non-HIV-attributable cervical cancer. Improved quantification of cervical cancer burden by age and HIV status can inform cervical cancer prevention efforts in SSA, including prediction of the impact of WLHIV-targeted vs general population approaches to cervical screening, and impact of HIV prevention

    Genetic analyses of the QT interval and its components in over 250K individuals identifies new loci and pathways affecting ventricular depolarization and repolarization

    Get PDF

    Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways

    Get PDF
    The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (&gt;250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Hemodynamic trends in full term newborns versus late preterms during transition

    No full text
    To define hemodynamic changes in the first 15 minutes of life and at one hour after birth in healthy full term and late preterm neonates using electrical cardiometry. This is a prospective observational study using EC in the first 15 minutes of life and one hour after birth. Two hundred newborns were included in the study and divided into two groups. Group A included 100 healthy full term newborns (?37 weeks gestational age), while group B included 100 late preterms (?34 weeks up to 366 weeks gestational age). Each group was further subdivided according to mode of delivery to vaginal delivery group and elective CS group. The study included 200 newborns. Higher values of PEP were observed in full term than preterm neonates. TFC is higher in CS group when compared to VD group. SVV tends to decrease over time. Oxygen saturation increases over time. The present study provides normative values for PEP, TFC, O2 saturation and SVV during the first hour of life using electrical cardiometry

    Hemodynamic Trends in Full Term Newborns Versus Late Preterms During Transition

    Full text link
    To define hemodynamic changes in the first 15 minutes of life and at one hour after birth in healthy full term and late preterm neonates using electrical cardiometry. This is a prospective observational study using EC in the first 15 minutes of life and one hour after birth. Two hundred newborns were included in the study and divided into two groups. Group A included 100 healthy full term newborns (?37 weeks gestational age), while group B included 100 late preterms (?34 weeks up to 366 weeks gestational age). Each group was further subdivided according to mode of delivery to vaginal delivery group and elective CS group. The study included 200 newborns. Higher values of PEP were observed in full term than preterm neonates. TFC is higher in CS group when compared to VD group. SVV tends to decrease over time. Oxygen saturation increases over time. The present study provides normative values for PEP, TFC, O2 saturation and SVV during the first hour of life using electrical cardiometry
    corecore