1,502 research outputs found
Atmospheric Muons Measured with IceCube
IceCube is a cubic-kilometer Cherenkov detector in the deep ice at the
geographic South Pole. The dominant event yield is produced by penetrating
atmospheric muons with energies above several 100 GeV. Due to its large
detector volume, IceCube provides unique opportunities to study atmospheric
muons with large statistics in detail. Measurements of the energy spectrum and
the lateral separation distribution of muons offer insights into hadronic
interactions during the air shower development and can be used to test hadronic
models.
We will present an overview of various measurements of atmospheric muons in
IceCube, including the energy spectrum of muons between 10 TeV and 1 PeV. This
is used to derive an estimate of the prompt contribution of muons, originating
from the decay of heavy (mainly charmed) hadrons and unflavored mesons. We will
also present measurements of the lateral separation distributions of TeV muons
between 150 m and 450 m for several initial cosmic ray energies between 1 PeV
and 16 PeV. Finally, the angular distribution of atmospheric muons in IceCube
will be discussed.Comment: 4 pages, 5 figures; Proceedings of the International Symposium on
Very High Energy Cosmic Ray Interactions (ISVHECRI 2018), to appear in EPJ
Web of Conference
Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers
We present a summary of recent tests and measurements of hadronic interaction
properties with air showers. This report has a special focus on muon density
measurements. Several experiments reported deviations between simulated and
recorded muon densities in extensive air showers, while others reported no
discrepancies. We combine data from eight leading air shower experiments to
cover shower energies from PeV to tens of EeV. Data are combined using the
z-scale, a unified reference scale based on simulated air showers.
Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon
deficit in simulated air showers for each of the six considered hadronic
interaction models. The deficit is increasing with shower energy. For the
models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.Comment: Submitted to the Proceedings of UHECR201
Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data
A search for high-energy neutrinos interacting within the IceCube detector
between 2010 and 2012 provided the first evidence for a high-energy neutrino
flux of extraterrestrial origin. Results from an analysis using the same
methods with a third year (2012-2013) of data from the complete IceCube
detector are consistent with the previously reported astrophysical flux in the
100 TeV - PeV range at the level of per flavor and reject a
purely atmospheric explanation for the combined 3-year data at .
The data are consistent with expectations for equal fluxes of all three
neutrino flavors and with isotropic arrival directions, suggesting either
numerous or spatially extended sources. The three-year dataset, with a livetime
of 988 days, contains a total of 37 neutrino candidate events with deposited
energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy
neutrino interaction ever observed.Comment: 8 pages, 5 figures. Accepted by PRL. The event catalog, event
displays, and other data tables are included after the final page of the
article. Changed from the initial submission to reflect referee comments,
expanding the section on atmospheric backgrounds, and fixes offsets of up to
0.9 seconds in reported event times. Address correspondence to: J. Feintzeig,
C. Kopper, N. Whitehor
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV
energies raises the question of which astrophysical sources generate this
signal. One class of extragalactic sources which may produce such high-energy
neutrinos are blazars. We present a likelihood analysis searching for
cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue
(2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the
detection of individual sources. In contrast to previous searches with IceCube,
the populations investigated contain up to hundreds of sources, the largest one
being the entire blazar sample in the 2LAC catalogue. No significant excess is
observed and upper limits for the cumulative flux from these populations are
obtained. These constrain the maximum contribution of the 2LAC blazars to the
observed astrophysical neutrino flux to be or less between around 10
TeV and 2 PeV, assuming equipartition of flavours at Earth and a single
power-law spectrum with a spectral index of . We can still exclude that
the 2LAC blazars (and sub-populations) emit more than of the observed
neutrinos up to a spectral index as hard as in the same energy range.
Our result takes into account that the neutrino source count distribution is
unknown, and it does not assume strict proportionality of the neutrino flux to
the measured 2LAC -ray signal for each source. Additionally, we
constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube
We present constraints derived from a search of four years of IceCube data
for a prompt neutrino flux from gamma-ray bursts (GRBs). A single
low-significance neutrino, compatible with the atmospheric neutrino background,
was found in coincidence with one of the 506 observed bursts. Although GRBs
have been proposed as candidate sources for ultra-high energy cosmic rays, our
limits on the neutrino flux disfavor much of the parameter space for the latest
models. We also find that no more than of the recently observed
astrophysical neutrino flux consists of prompt emission from GRBs that are
potentially observable by existing satellites.Comment: 15 pages, 3 figure
Search for astrophysical sources of neutrinos using cascade events in IceCube
The IceCube neutrino observatory has established the existence of a flux of
high-energy astrophysical neutrinos inconsistent with the expectation from
atmospheric backgrounds at a significance greater than . This flux has
been observed in analyses of both track events from muon neutrino interactions
and cascade events from interactions of all neutrino flavors. Searches for
astrophysical neutrino sources have focused on track events due to the
significantly better angular resolution of track reconstructions. To date, no
such sources have been confirmed. Here we present the first search for
astrophysical neutrino sources using cascades interacting in IceCube with
deposited energies as small as 1 TeV. No significant clustering was observed in
a selection of 263 cascades collected from May 2010 to May 2012. We show that
compared to the classic approach using tracks, this statistically-independent
search offers improved sensitivity to sources in the southern sky, especially
if the emission is spatially extended or follows a soft energy spectrum. This
enhancement is due to the low background from atmospheric neutrinos forming
cascade events and the additional veto of atmospheric neutrinos at declinations
.Comment: 14 pages, 9 figures, 1 tabl
Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube
The IceCube Neutrino Observatory was designed primarily to search for
high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A
search for ~TeV neutrinos interacting inside the instrumented
volume has recently provided evidence for an isotropic flux of such neutrinos.
At lower energies, IceCube collects large numbers of neutrinos from the weak
decays of mesons in cosmic-ray air showers. Here we present the results of a
search for neutrino interactions inside IceCube's instrumented volume between
1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy
threshold for neutrinos from the southern sky below 10 TeV for the first time,
far below the threshold of the previous high-energy analysis. Astrophysical
neutrinos remain the dominant component in the southern sky down to 10 TeV.
From these data we derive new constraints on the diffuse astrophysical neutrino
spectrum, , as well as the strongest upper limit yet on
the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times
the benchmark theoretical prediction used in previous IceCube results at 90\%
confidence.Comment: 18 pages, 12 figure
Neutrinos and Cosmic Rays Observed by IceCube
The core mission of the IceCube Neutrino observatory is to study the origin
and propagation of cosmic rays. IceCube, with its surface component IceTop,
observes multiple signatures to accomplish this mission. Most important are the
astrophysical neutrinos that are produced in interactions of cosmic rays, close
to their sources and in interstellar space. IceCube is the first instrument
that measures the properties of this astrophysical neutrino flux, and
constrains its origin. In addition, the spectrum, composition and anisotropy of
the local cosmic-ray flux are obtained from measurements of atmospheric muons
and showers. Here we provide an overview of recent findings from the analysis
of IceCube data, and their implications on our understanding of cosmic rays.Comment: Review article, to appear in Advances in Space Research, special
issue "Origins of Cosmic Rays
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
- …
