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Abstract

The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos,
which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5σ. This
flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from
interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due
to the significantly better angular resolution of track reconstructions. To date, no such sources have been
confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in
IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263
cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks,
this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the
emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background
from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at
declinations −30°.

Key words: astroparticle physics – neutrinos

1. Introduction

Neutrinos are promising messenger particles for astrophysi-
cal observations due to their extremely small interaction cross-
sections and lack of electric charge. They can travel enormous
distances largely unimpeded by intervening matter and
undeflected by magnetic fields. These properties make it
possible to associate neutrinos from distant sources with each
other and with known sources of electromagnetic radiation.
Furthermore, because neutrinos are produced in high-energy
hadronic interactions, observations of astrophysical neutrinos
will shed light on the still-elusive origins of the highest-energy
cosmic rays (Gaisser et al. 1995; Learned & Mannheim 2000;
Becker 2008).

IceCube is the first km3-scale neutrino detector (Achterberg
et al. 2006). Using an array of photomultiplier tubes (PMTs)

deployed deep in the antarctic glacial ice near the South Pole, it
can detect neutrinos of all flavors by collecting the Cherenkov light
emitted by the relativistic charged particles produced when
neutrinos interact with atomic nuclei in the ice. Neutrinos produce
one of two topologically distinct signatures: tracks and cascades.
Charged current (CC) muon neutrino interactions yield long-lived
muons that can travel several kilometers through the ice (Chirkin
& Rhode 2004), producing an elongated track signature in the
detector. CC interactions of other neutrino flavors, and all neutral
current (NC) interactions, yield hadronic and electromagnetic
showers that typically range less than 20m (Aartsen et al. 2014a),
with 90% of the light emitted within 4m of the shower
maximum(Radel & Wiebusch 2013)—a short distance compared
to the scattering and absorption lengths of light in the ice (Aartsen
et al. 2013b) as well as the spacing of the PMTs. These showers
produce a nearly spherically symmetric cascade signature in light.

2
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A flux of astrophysical neutrinos above ∼60 TeV, which is
inconsistent with the expectation from atmospheric back-
grounds at greater than 5σ, was first established using neutrinos
interacting within the instrumented volume of IceCube
(Aartsen et al. 2014c, 2015a). The majority of events
contributing to this measurement were cascades. More recently,
this flux has been confirmed in an analysis of tracks from muon
neutrinos above ∼300 TeV originating in the northern sky
(Aartsen et al. 2015c, 2016c). No significant anisotropy has yet
been observed, and the neutrino flavor ratio at Earth is
consistent with 1:1:1 (Aartsen et al. 2015d).

Searches for astrophysical neutrino sources have tradition-
ally focused on track events because the elongated signature
gives much better angular resolution than can be obtained for
cascades. While ANTARES recently reported the addition of a
cascade selection to their all-sky search for sources of steady
neutrino emission (Adrian-Martinez et al. 2015), IceCube has
so far excluded cascades from its all-sky search (Aartsen et al.
2017a) except in the simplified analysis applied only to very
high-energy contained events (Aartsen et al. 2015a).

In this paper, we present the first all-sky search for
astrophysical neutrino sources producing cascades in IceCube
with deposited energies as small as 1 TeV. This analysis
includes 263 cascades observed from 2010 May to 2012 May.
We find that, due to the relatively low rate of atmospheric
backgrounds in this sample, this search reduces the energy
threshold in the southern sky relative to previous IceCube work
with tracks. The sensitivity of this search is much less
dependent on the declination, spatial extension, and emission
spectrum of a possible source. In the following sections, we
begin with an overview of the detector, experimental data set,
and statistical methods used in this analysis before reporting
results from the two-year sample and discussing directions for
future work.

2. IceCube

The IceCube detector (described in detail in Aartsen et al.
2017b) consists of 5160 Digital Optical Modules (DOMs)
buried in the glacial ice near the South Pole. The DOMs are
mounted on 86 vertical “strings,” with 60 DOMs on each
string. Each string is connected to a central lab on the surface
by a cable that provides power and communication with the
data acquisition (DAQ) system (Abbasi et al. 2009). Seventy-
eight of the strings are arranged in a hexagonal grid with a
spacing of 125 m; on these strings, DOMs are distributed
uniformly from 1450 to 2450 m below the surface of the ice.
The remaining 8 strings make up the denser DeepCore in-fill
array (Abbasi et al. 2012), with inter-string spacing of
30–60 m. The in-fill strings include 50 DOMs in the
particularly clear ice at depths of 2100–2450 m and an
additional 10 DOMs evenly spaced at depths of
1750–1850 m. Construction was performed during Austral
summers starting in 2004. A nearly complete 79-string
configuration began taking data in 2010 May, and the first
year of data from the complete 86-string detector was taken
from 2011 May to 2012 May.
Each DOM includes a 25 cm diameter PMT (Abbasi et al.

2010) and supporting electronics. A local coincidence condi-
tion occurs when a DOM and one of its nearest neighbors
exceed a threshold of one-fourth of the mean expected voltage
from a single photoelectron (PE). When at least eight DOMs
observe local coincidence within 6.4 μs, the DAQ produces an
event consisting of 400 ns digitized waveforms from all DOMs
observing local coincidence and 75 ns waveforms from all
other DOMs exceeding the threshold. The waveforms are then
decomposed into a series of pulse arrival times and PE counts,
which are used to reconstruct the trajectory and deposited
energy of the relativistic particles in the detector (Ahrens et al.
2004; Aartsen et al. 2014a).

Figure 1. Reconstructed energy (left) and declination (right) distributions for the best-fit atmospheric and astrophysical spectra (shaded histograms) obtained in
Aartsen et al. (2015b) compared to the distributions for the 263 cascades (black crosses) depositing at least 1 TeV observed in that analysis. Atmospheric muons
misidentified as cascades after passing undetected through the veto layer are concentrated at sin(δ)<−0.3, while in the same range some atmospheric neutrinos are
rejected because they are accompanied by incoming muons.
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The simple eight-DOM trigger accepts neutrino-induced
events with very high efficiency. Unfortunately, even deep in
the glacial ice, cosmic-ray-induced atmospheric muons trigger
the detector at an average rate of 2.7 kHz, overwhelming the
trigger rate of atmospheric neutrinos (∼20 mHz) and rare
astrophysical neutrinos. An initial data reduction step per-
formed at the South Pole reduces the event rate by a factor of
100 by rejecting lower-energy events that are consistent with
downgoing tracks. The remaining data set, still dominated by
downgoing muons, is transmitted to the northern hemisphere
via satellite for further analysis.

3. Neutrino Selection

IceCube searches for moderate- to high-energy neutrinos
generally exploit one of two methods to reject the atmospheric
muon background. The largest effective volume and best
angular resolution are available when incoming muon tracks
are accepted. This approach offers good performance for muon
neutrinos from the northern celestial hemisphere because only
neutrinos can survive passage through the intervening earth
before producing upgoing muons in the ice. However,
neutrino- and cosmic-ray-induced downgoing muon tracks
entering the detector from above produce nearly indistinguish-
able event topologies. Astrophysical neutrinos from the
southern sky can be identified on a statistical basis if the
neutrino spectrum is harder than the atmospheric muon
spectrum, but this strategy increases the energy threshold to
∼100 TeV in the southern sky, compared to only ∼1 TeV in
the northern sky (Aartsen et al. 2014d).

An alternative method is to restrict the analysis to “starting
events,” for which the earliest observed pulses occur within the
instrumented volume. The use of the outermost DOMs as a

veto layer allows the rejection of atmospheric muons that enter
the detector from above or merely pass sufficiently close to the
instrumented volume to produce a signal capable of surviving
the initial filter. Analyses of starting events are able to accept
neutrinos of all flavors and interaction types because only
neutrinos can pass undetected through the veto layer before
interacting in the ice. Veto methods currently used in IceCube
analyses significantly reduce the effective volume for detecting
νμ-induced muon tracks, resulting in a smaller final sample that
is dominated by cascades. The angular uncertainty of cascade
reconstructions (10°) is large compared to that of track
reconstructions (1°). However, the requirement that the
neutrino interaction vertex is located within the instrumented
volume results in good energy resolution (within ∼10%;
Aartsen et al. 2014a) compared to incoming muon tracks
originating at an unknown distance from the detector.
Lower-energy muons not only deposit less energy overall,

but they may travel larger distances between substantial energy
losses due to the stochastic nature of radiative processes at
these energies. The initial discovery of astrophysical neutrinos
used only the outermost DOMs as a veto layer and thus
achieved adequate background rejection only at energies
60TeV (Aartsen et al. 2014c). In a follow-up analysis, the
energy threshold was reduced to ∼1 TeV by scaling the veto
thickness as a function of total collected charge (Aartsen et al.
2015b) such that events depositing as little as 100 PE could be
observed, provided that the earliest light was found in the
DeepCore in-fill array.
This adaptive veto event selection was applied to two years of

data taken from 2010 May to 2012 May—one year using the
nearly complete 79-string configuration and one year using the
complete 86-string detector. In a total of 641 days of IceCube
livetime, 283 cascade and 105 track events were found (Aartsen
et al. 2015b). While most of the track events are accepted by νμ
point-source searches (Aartsen et al. 2014d) and a small fraction
of the cascades are included in the earlier high-energy starting
event analysis (Aartsen et al. 2013a, 2014c), the majority of
these cascades has not yet been studied in the context of spatial
clustering. In this paper, we turn our attention to 263 of these
cascades with deposited energies of 1TeV–1PeV to perform an
astrophysical neutrino source search that is complementary to
and statistically independent from traditional track analyses.
The reconstructed energy and declination distributions for

the 263 observed cascades are compared in Figure 1 with the
expectation from the best-fit atmospheric and astrophysical
fluxes found in the spectral analysis. The fitted astrophysical
component follows an E−2.46 spectrum and contributes an
expected -

+71 8.4
9.5 cascades in 641 days—a far larger fraction of

the total event rate than in previous source searches with
tracks(Aartsen et al. 2017a). The neutrino energy distribution
is shown in Figure 2 for the best-fit spectrum as well as the hard
(E−2) and soft (E−3) source spectrum hypotheses tested directly
in this paper. For an E−3 spectrum, we expect 90% of events to
have energies between 2 and 90 TeV; for an E−2 spectrum this
range shifts to 6 TeV–5 PeV.
In this work, we use the same per-event reconstructions as in

the spectral analysis. The strict containment requirement results
in good energy resolution up to at least ∼few PeV. The
reconstructed energy agrees with the neutrino energy within
∼10% for 68% of CC νe interactions and is on average
proportional to neutrino energy for other interaction flavors
(Aartsen et al. 2015b). Agreement between reconstructed and

Figure 2. Neutrino energy distributions expected from sources emitting a hard
(E−2, blue) or soft (E−3, red) spectrum compared with the best-fit all-sky
astrophysical component following an E−2.46 spectrum (green). Each
distribution includes all standard model neutrino flavors, assuming a 1:1:1
flavor ratio at Earth with equal fluxes of ν andn̄ . Vertical lines indicate
intervals containing 90% of events. While no such events have yet been
observed, an enhanced acceptance is expected for νe at 6.3 PeV due to the
Glashow resonance(Glashow 1960).
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true neutrino energy is shown in Figure 3. The primary
challenge for source searches with cascades is the angular
reconstruction, for which the performance is shown as a
function of energy in Figure 4 and averaged over all energies in
Figure 5. At low energies, the reconstruction benefits to some
degree from the preferential selection of interactions in or near
the more densely instrumented DeepCore. At high energies,
performance is somewhat poorer than optimal—compare with,
e.g., Aartsen et al. (2014a)—likely due to the specific
reconstruction settings used for this sample, which are less
computationally intensive but employ a coarser description of
the expected light yield and a less rigorous scan of the
directional likelihood landscape.

4. Methods and Performance

We use an unbinned maximum likelihood method to
quantify the extent to which the observed events are more
consistent with a spatially localized astrophysical signal
hypothesis than a randomly distributed background hypothesis.
This method exploits the spatial distribution of events as well
as the distribution of per-event deposited energies, where the
latter improves the sensitivity to sources with harder spectra
than atmospheric backgrounds. While we largely follow the
approach used in traditional track analyses (most recently
Aartsen et al. 2017a), the specific signal and background
models are modified to accommodate the large angular
uncertainties and overall low statistics of the cascade event
selection. In Section 4.1, we review the likelihood construction,
including explanations for changes with respect to previous
work with tracks. In Section 4.2, we introduce the specific
hypothesis tests considered in this work. Systematic uncertain-
ties are discussed in Section 4.3 and the performance of the
cascade analysis is presented in Section 4.4.

4.1. Maximum Likelihood Method

The likelihood is expressed as a product over events i:

  g = + -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )n

n

N

n

N
, 1 , 1s

i

s
i

s
i

where ns is the number of signal events, γ is the spectral index
of the source, N=263 is the total number of events, i is the

Figure 3. Ratio of reconstructed to true neutrino energy for signal MC
following an E−2.46 spectrum. Reconstructed energy is on average proportional
to true neutrino energy for all interaction flavors, with agreement within ∼10%
for 68% of CC νe interactions.

Figure 4. Expected angular reconstruction performance as a function of
neutrino energy. Shaded regions indicate the radii of error circles covering
20%, 50%, and 80% of events. Below 20 PeV, the median angular error,
highlighted by the dark blue curve, ranges from 11° to 20°.

Figure 5. Expected distribution of angular separation between reconstructed
and true neutrino direction for signal MC following an E−2.46 spectrum. While
the distribution includes a tail extending all the way to 180°, 50% (90%) of
events are reconstructed within 13° (45°).
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likelihood of event i contributing to the source, and i is the
likelihood of event i contributing to atmospheric or unresolved
astrophysical backgrounds. i depends on the properties of
both eventi and the source hypothesis (including spectral index
γ), while i depends only on the properties of the events. n̂s and
ĝ are the values that give the maximum likelihood ̂, subject to
the constraint that n̂ 0s . Events that are more correlated
spatially or energetically with the source hypothesis obtain
larger values for i, driving the fit toward larger values of n̂s

and ̂.
We approximate the signal and background likelihoods i

and i as products of space and energy factors: ·S Si i
space energy

and ·B Bi i
space energy, respectively. Each factor is obtained by

convolving the properties of the event origin—either astro-
physical source, or atmospheric or unresolved astrophysical
background—first with the detector response and then with the
event reconstruction resolution. For Bi

space, this is done using a
normalized histogram of reconstructed declination δ for an
ensemble of background-like events, accounting for detector
effects and smearing from finite angular resolution simulta-
neously. Similarly, for Si

energy and Bi
energy, we use normalized

histograms of the logarithm of the deposited energy Elog10 for
ensembles of signal-like and background-like events, respec-
tively, accounting for the declination dependence with
separately normalized histograms in each of 10 bins in dsin .
Si

energy is computed from signal Monte Carlo (MC) on a grid of
spectral indices γ ranging from 1 to 4. For a given event, Bi

space,
Si

energy, and Bi
energy are equal to the values of the histograms for

the bin containing the event. The location of IceCube at the
geographic South Pole allows us to express these factors as
functions of declination, rather than zenith angle with respect to
the detector, without loss of information. A small additional
dependence on azimuth angle is neglected.

In the classic track analysis, the background per-event
likelihoods are constructed from the full experimental data set.
With a large sample of well-reconstructed muon tracks
dominated by atmospheric backgrounds, both Bi

space and
Bi

energy are well constrained statistically even for dense binning
in both dsin and Elog10 . By contrast, our sample of only 263
cascade events is only sufficient to constrain Bi

space. Thus our
first modification to the method is to construct Bi

energy from
neutrino and atmospheric muon MC simulations weighted to
the best-fit atmospheric and astrophysical spectra found by the
all-sky flux analysis using these events (Aartsen et al. 2015b).
In this way, we obtain a detailed estimate of the energy
distribution throughout the sky, even at energies not yet
observed at all declinations in two years of experimental
livetime.

The signal space factor Si
space is obtained by convolving a

source hypothesis with an analytical estimate of the spatial
probability density distribution for event i originating at
reconstructed right ascension and declination (αi, δi). In track
analyses, it is a good approximation to model this distribution
as a 2D Gaussian with width si estimated event-by-event using
a dedicated reconstruction. We modify this treatment for
cascades both because the angular uncertainties are much larger
and because it is too computationally expensive to estimate
them directly for each event.

In this analysis, we parameterize the angular resolution as a
function of reconstructed declination δi and energy Ei. In parts
of this parameter space, either the declination or right ascension

errors tend to be systematically larger, so these are treated
independently. For each of 10 bins in dsin and 12 in Elog10 ,
we find the values σα and σδ such that a a s- < a∣ ∣i i

true , and
separately d d s- < d∣ ∣i i

true , for 68.27% of simulated events in
the bin. The spatial probability density distribution for
observed event i is the product of 1D Gaussians with these
widths, normalized such that the distribution integrates to unity
on the sphere.
We consider two types of source hypotheses: point sources

and the galactic plane—an extremely extended source. A point
source is modeled as a 2D delta distribution centered at the
source coordinates. The expected emission from the galactic
plane is in general model-dependent. Here we represent the
galactic plane as a simple line source at galactic latitude b=0.
In either case, Si

space is obtained by convolving the source
hypothesis with the per-event spatial probability density
distributions described above. For point sources, the convolu-
tion is trivial; for the galactic plane, it is evaluated numerically
on a grid with 1° spacing.

4.2. Hypothesis Tests

In this work, we consider three search categories: (1)a scan
for point-like sources anywhere in the sky, (2)a search for
neutrinos correlated with an a priori catalog of promising
source candidates, and (3)a search for neutrinos correlated
with the galactic plane. Each search entails multiple specific
hypothesis tests. The all-sky scan tests for point-like sources on
a dense grid of coordinates throughout the sky. The catalog
search tests the coordinates of each source candidate
individually. The galactic plane search includes partially
correlated tests for a hypothesis including the entire galactic
plane and a hypothesis including only the part of the galactic
plane in southern sky.
The test statistic used to compute significances is the

likelihood ratio:



 g

= -
=⎡

⎣⎢
⎤
⎦⎥

( )
( ˆ ˆ )

( )n

n
2 ln

0

,
, 2s

s

where  =( )n 0s is the background-only likelihood and is
independent of γ. For an individual hypothesis, the pre-trial
significance ppre of an observation yielding a test statistic obs is
the probability of observing  > obs if the background-only
hypothesis were true. The background-only  distribution is
found by performing the likelihood test on a large number of
ensembles with randomized αi, which removes any clustering
that may be present in the true event ensemble. At declinations
close to the poles, d > ∣ ∣ 60i , randomizing αi alone is
insufficient to remove a possible cluster of cascades. This is
addressed by additionally randomizing dsin i for the 15 events
within these regions.
The pre-trial results, ppre, do not account for multiple and

partially correlated hypothesis tests conducted in each search
category. The post-trial significance is determined by the most
significant ppre for any hypothesis in the category. Specifically,
for each search category, we find the post-trial probability ppost
of observing any <( ) ( )p pmin minpre pre obs if the background-
only hypothesis were true. The background-only ( )pmin pre
distribution is found by generating additional randomized event
ensembles and noting the most significant ppre in each one. This
construction leads to one final significance ppost for each type of
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search; a further look-elsewhere effect between the all-sky,
source candidate catalog, and galactic plane searches is not
explicitly accounted for. This method is conservative in that it
strictly controls only the false positive, but not the true positive,
error rate.

We use the classical statistical approach (Neyman 1937;
Lehmann & Romano 2005) to calculate the sensitivity,
discovery potential, and flux upper limits. The flux level is
determined using randomized trials in which signal MC events
are injected at a Poisson rate nsig and distributed according to
the spatial and energetic properties of the signal hypothesis.
The remaining N−nsig events are injected according to the
background modeling procedure described above. The sensi-
tivity flux is that which gives a 90% probability of obtaining
 > med, where med is the median of the background-only 
distribution. The discovery potential flux is obtained by the
same procedure, but for a 50% probability of yielding a 5σ pre-
trial significance. The 90% confidence level upper limit is the
larger of either the sensitivity or that flux which gives a 90%
probability of obtaining  > obs.

4.3. Systematic Uncertainties

The randomization procedures described in the previous
section yield background models and significances that are
robust against systematic uncertainties. However, flux calcula-
tions in this analysis are based on detailed neutrino signal MC
as described in Aartsen et al. (2016c) and are subject to
systematic uncertainties. We estimate the impact of these
uncertainties on our results via their impact on the cascade
angular resolution and signal acceptance. Of these, uncertain-
ties related to the angular resolution are the dominant effect.
Reconstruction performance estimates from the baseline MC
are limited by statistical uncertainties in the observed light as
well as any practical computational tradeoffs made in data
processing. These estimates do not account for possible
systematic errors in the modeling of light absorption and
scattering in either the bulk of South Pole glacial ice or the
narrow columns of refrozen ice surrounding the DOMs.
Uncertainties in the light yield from showers and the optical
efficiency of the DOMs are also neglected in the baseline MC.
Taken together, we estimate that these effects introduce an
angular resolution uncertainty that can be approximated as a
Gaussian smearing of the baseline point-spread function with
width σsys∼8° (compare, e.g., the typical per-event errors in
Aartsen et al. (2014c) with the median expected pure-statistical
errors in Aartsen et al. (2014a)). Applying this smearing
weakens the sensitivity by ∼20% (∼23%) for sources
following an E−2 (E−3) spectrum, approximately independent
of source declination.

The uncertainties described above also have a small impact
on the estimated signal acceptance of the event selection.
Uncertainties in the DOM efficiency are, on average, inversely
correlated with uncertainties in the scattering and absorption
coefficients, so we can safely estimate the impact of these
uncertainties using a parameterization from available MC data
sets, which only vary the DOM efficiency explicitly. We
consider a reduced DOM efficiency of −10% relative to the
baseline MC, which decreases both the number of accepted
events for a given flux and the reconstructed deposited energy
of each simulated event. Under this change, most signal events
are assigned slightly smaller weights ( )S B i

energy and some fall
below the detection threshold, weakening the sensitivity by

∼4%, approximately independent of source spectrum and
declination.
The signal acceptance also depends on the neutrino

interaction cross-section, which is known within a similar
uncertainty +4%/−2.4% below 100 PeV (Cooper-Sarkar et al.
2011). The resulting impact on this analysis is, in general,
dependent on declination and neutrino energy, as an increased
(decreased) cross-section would simultaneously increase
(decrease) the probability of detecting a neutrino upon arrival
in the instrumented volume but decrease (increase) the
probability of a neutrino reaching the detector after passing
through the intervening earth and ice. We take ∼4% as a
conservative estimate of the acceptance uncertainty due to
neutrino interaction cross-section uncertainties.
While the signal acceptance depends largely on the total

amount of light recorded by the DOMs, the angular resolution
depends most strongly on the spatial and temporal distribution
of light in the detector. Therefore, we take these effects to be
approximately independent and add the above values in
quadrature to obtain a total systematic uncertainty of 21%
(24%) for sources following an E−2 (E−3) spectrum. All
following sensitivities, discovery potentials, and flux upper
limits include this factor.

4.4. Performance

The per-flavor sensitivity flux as a function of source
declination for this work and the most recently published
IceCube (Aartsen et al. 2017a) and ANTARES (Adrian-
Martinez et al. 2014) track analyses are compared in Figure 6.
The cascade sensitivity shows only weak declination depend-
ence and, for an E−2 spectrum, roughly traces the sensitivity of
ANTARES. Near the South Pole, the sensitivity is enhanced by
the veto of atmospheric neutrinos accompanied by muons from
the same cosmic-ray-induced shower. The sensitivity is weaker
near the horizon, where this veto of atmospheric neutrinos is
not possible. From the horizon to the North Pole, the sensitivity
then improves for a soft -E 3 spectrum but continues to weaken
for a hard E−2 spectrum because high-energy neutrinos are
subject to significant absorption in transit through the Earth.
The sensitivity of the classic track search, by contrast, is
strongly declination-dependent, with the best performance in
the northern sky. For a southern source with a soft spectrum,
the sensitivity flux is better with just two years of cascades than
with seven years of tracks.
We further explore the sensitivity to a southern source at

δ=−60° in Figure 7, which shows the per-flavor sensitivity
flux for an E−2 signal spectrum injected in quarter-decade bins
in neutrino energy. Here we directly compare the cascade and
track channels by scaling each analysis to an equal 3 year
livetime—the same exposure as in the first IceCube point-
source search to make use of starting tracks (Aartsen et al.
2016b). At this declination, the low background cascade search
is more sensitive to such a southern source than IceCube track-
based searches up to ∼1 PeV.
Because of the large angular uncertainty for cascade events

in IceCube, the sensitivity depends only weakly on the angular
size of the source. In Figure 8, the sensitivity is shown as a
function of angular extension of the source. The source
extension is modeled as a Gaussian smearing of a point-source
hypothesis. For a smearing of up to 10°, the sensitivity of this
search is only 30% weaker than for a point source. In the
classic track searches with angular resolution 1°, the
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sensitivity flux increases much more rapidly with source
extension—even when a matching extended source hypothesis
is used in the likelihood. As shown in Figure 8, the per-flavor
sensitivity flux for a source with extension �2° in the southern
sky at δ�−30° is lower with just two years of cascades than

with seven years of tracks. The cascade analysis performance is
sufficiently independent of source extension that we need not
apply dedicated extended source hypothesis tests in this work.

5. Results

The result of the all-sky scan is shown in Figure 9. The most
significant deviation from the isotropic expectation is found in
the southern sky at (α, δ)=(277°.3,−43°.4). The pre-trial
significance is ppre=0.6%, and the best-fit number of signal
events and spectral index are =n̂ 7.1s and g =ˆ 2.2, respec-
tively. Accounting for the large number of partially correlated
hypothesis tests in this scan, as described in Section 4.2, the
post-trial significance is ppost=66%.
For the source candidate catalog search, an ensemble of 74

promising source candidates was selected a priori by merging

Figure 6. Per-flavor sensitivity of the present 2 year cascade analysis and
previous 7year IceCube (Aartsen et al. 2017a) and 1338day ANTARES
(Adrian-Martinez et al. 2014) track analyses as a function of declination for a
hard spectrum (γ=2) and soft spectrum (γ = 3).

Figure 7. Per-flavor differential sensitivity for a source at δ=−60° for track
analyses of throughgoing (Aartsen et al. 2014d) and starting (Aartsen et al.
2016b) tracks, compared to this cascade analysis using the event selection from
Aartsen et al. (2015b). The sensitivity in cascades is enhanced at 6.3 PeV due
to the Glashow resonance (Glashow 1960). In this plot, all sensitivities are
calculated for an equal 3 year exposure.

Figure 8. Per-flavor sensitivity as a function of angular extension of the source.
For cascades, a point-source hypothesis is used in the likelihood regardless of
injected source extension. For tracks, the sensitivity is found for an extended
source hypothesis matching the injected signal using the throughgoing track
data set from Aartsen et al. (2017a).

Figure 9. Two-year starting cascade skymap in equatorial coordinates (J2000).
The skymap shows pre-trial p-values for all locations in the sky. The gray curve
indicates the galactic plane, and the gray dot indicates the galactic center.
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previously studied catalogs of interesting galactic and extra-
galactic objects (Adrian-Martinez et al. 2016b; Aartsen et al.
2017a). The result of the search is shown in Table 1. The most
significant source is BL Lac, located at (α, δ)=(330°.68,
42°.28). The pre-trial significance is ppre=1.0%, and the best-
fit number of signal events and spectral index are =n̂ 6.9s
and g =ˆ 3.0, respectively. The post-trial significance is
ppost=36%. Flux upper limits for each object in the catalog
are shown in Figure 10 along with the sensitivity and 5σ
discovery potential as functions of declination.

Of the galactic plane searches, the southern-sky-only hypoth-
esis test was more significant, with a pre-trial ppre=50%. The
fit obtained ns=2.7 and γ=2. This test is strongly correlated
with the all-sky search; the post-trial significance is ppost=65%.

6. Conclusion and Outlook

In this first search for sources of astrophysical neutrinos
using cascades with energies as low as 1 TeV in two years of
IceCube data, no significant source was found. This result is
consistent with previous νμ searches (Adrian-Martinez et al.
2012, 2016b; Aartsen et al. 2017a), which already found
stringent constraints on emission from astrophysical point
sources of neutrinos. Nevertheless, this analysis shows that
despite large angular uncertainties, all-flavor source searches
with cascades are surprisingly sensitive, particularly to
emission from southern sources that follow a soft energy
spectrum or are spatially extended. This type of analysis is
therefore complementary to standard νμ searches, which are
most sensitive to point-like and northern sources.

Future source searches with cascades will benefit from several
improvements. Most importantly, the adaptive veto method will
soon be applied to at least four more years of IceCube data.
Because of the low background in this event selection, the
sensitivity strengthens faster than -[ ]detector livetime 1 2, as
shown in Figure 11. Ongoing work on the optimization of
cascade angular reconstructions, including increasingly detailed

studies of Cherenkov light propagation in South Pole glacial ice,
may lead to angular resolution improvements that increase the
cascade channel signal-to-background ratio further still.
In this work, we searched for neutrino emission from a

catalog of source candidates previously studied in track
analyses (Adrian-Martinez et al. 2016b; Aartsen et al. 2017a).
The catalog was optimized in light of the strengths of those
analyses, and thus includes many northern sources, which
would almost certainly be visible first in throughgoing tracks.
We may be able to improve the discovery potential for future
catalog analyses with cascades by considering a catalog of
source candidates for which this analysis is best-suited, such as
extended objects in the southern sky.

Figure 10. Sensitivity and 5σ discovery potential as functions of declination, with flux upper limits for each object in the source catalog. Left: hard spectral
assumption (γ = 2). Right: soft spectral assumption (γ = 3).

Figure 11. Projected sensitivity as a function of detector livetime for a source
at δ=−30°. Time evolution scaling with 1/T (background-free case) and

T1 (background-limited case) are shown in thick and thin gray dashed
curves, respectively.
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We have considered only very simple models for extended
emission from the galactic plane, which we have treated here as
a uniform line source. However, detailed models (Ackermann
et al. 2012; Gaggero et al. 2015) have been constructed to
account for the measured distribution of γ emission from
poorly resolved sources and cosmic-ray interactions with
galactic dust clouds. Future cascade analyses will test these
models directly, leading to clearer statements on neutrino
emission within our own galaxy.

Here we have searched only for steady, time-independent
neutrino emission, but the conclusions of this paper apply
equally well to transient sources. While a cascade event
selection has been added to IceCube’s gamma-ray burst
analysis (Aartsen et al. 2016a), other time-dependent analyses
(e.g., Aartsen et al. 2015e) have not yet made use of this
channel. In the future, searches for emission from objects such
as flaring AGNs could benefit from the inclusion of neutrino-
induced cascades. Proposed next-generation detectors (Aartsen
et al. 2014b; Adrian-Martinez et al. 2016a) may also benefit by
considering source searches with the cascade channel in the
optimization of their optical sensors and array geometry.
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Table 1
Summary of the Source Catalog Search

Type Source α(°) δ(°) ppre n̂s ĝ

BL Lac PKS 2005-489 302.37 −48.82 0.252 2.4 2.2

PKS 0537-441 84.71 −44.09 0.256 1.7 1.8
PKS 0426-380 67.17 −37.93 0.597 1.0 1.8
PKS 0548-322 87.67 −32.27 0.634 1.2 2.2
H 2356-309 359.78 −30.63 0.809 0.2 2.4
PKS 2155-304 329.72 −30.23 0.642 1.2 2.4
1ES 1101-232 165.91 −23.49 0.390 3.3 2.8
1ES 0347-121 57.35 −11.99 0.543 2.5 3.8
PKS 0235+164 39.66 16.62 L 0.0 L
1ES 0229+200 38.20 20.29 L 0.0 L
W Comae 185.38 28.23 0.618 0.6 3.8
Mrk 421 166.11 38.21 L 0.0 L
Mrk 501 253.47 39.76 0.404 1.5 2.6
BL Laca 330.68 42.28 0.010 6.9 3.0
H 1426+428 217.14 42.67 0.566 0.5 3.8
3C66A 35.67 43.04 0.482 0.9 3.8
1ES 2344+514 356.77 51.70 0.189 2.9 3.2
1ES 1959+650 300.00 65.15 0.519 0.6 3.0
S5 0716+71 110.47 71.34 L 0.0 L

Flat spectrum radio quasar PKS 1454-354 224.36 −35.65 0.612 1.6 2.2

PKS 1622-297 246.53 −29.86 0.286 3.6 2.2
PKS 0454-234 74.27 −23.43 L 0.0 L
QSO 1730-130 263.26 −13.08 0.365 4.5 3.8
PKS 0727-11 112.58 −11.70 L 0.0 L
PKS 1406-076 212.24 −7.87 0.375 5.6 3.8
QSO 2022-077 306.42 −7.64 L 0.0 L
HESS J1837-069 279.41 −6.95 0.121 8.9 3.8
3C279 194.05 −5.79 0.754 0.9 3.8
3C 273 187.28 2.05 0.718 0.9 2.8
PKS 1502+106 226.10 10.49 0.057 9.1 3.8
PKS 0528+134 82.73 13.53 L 0.0 L
3C 454.3 343.49 16.15 0.066 7.4 3.8
4C 38.41 248.81 38.13 0.391 1.6 2.4

10

The Astrophysical Journal, 846:136 (12pp), 2017 September 10 Aartsen et al.



ORCID iDs

J. J. DeLaunay https://orcid.org/0000-0001-5229-1995
P. Desiati https://orcid.org/0000-0001-9768-1858
G. de Wasseige https://orcid.org/0000-0002-1010-5100
P. A. Evenson https://orcid.org/0000-0001-7929-810X
U. Katz https://orcid.org/0000-0002-7063-4418
D. Lennarz https://orcid.org/0000-0002-0614-7359
J. A. Pepper https://orcid.org/0000-0002-3827-8417
S. Schoenen https://orcid.org/0000-0002-9236-6151
J. Vandenbroucke https://orcid.org/0000-0002-9867-6548

S. Westerhoff https://orcid.org/0000-0002-1422-7754
T. Yuan https://orcid.org/0000-0002-9211-3277

References

Aartsen, M. G., Abbasi, R., Abdou, Y., et al. 2013a, Sci, 342, 1242856
Aartsen, M. G., Abbasi, R., Abdou, Y., et al. 2013b, NIMPA, 711, 73
Aartsen, M. G., Abbasi, R., Ackermann, M., et al. 2014a, JINST, 9, P03009
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2015a, ICRC, 34, 1081
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2015c, PhRvL, 115, 081102
Aartsen, M. G., Abraham, K., Ackermann, M., et al. 2016a, ApJ, 824, 115

Table 1
(Continued)

Type Source α(°) δ(°) ppre n̂s ĝ

Galactic center Sgr A* 266.42 −29.01 0.080 5.6 2.2

Not identified HESS J1507-622 226.72 −62.34 0.473 0.7 1.0
HESS J1503-582 226.46 −58.74 0.438 0.7 1.0
HESS J1741-302 265.25 −30.20 0.072 5.7 2.2
HESS J1834-087 278.69 −8.76 0.180 7.5 3.8
MGRO J1908+06 286.98 6.27 0.078 8.5 3.8

Pulsar wind nebula HESS J1356-645 209.00 −64.50 0.795 0.1 3.8

PSR B1259-63 197.55 −63.52 L 0.0 L
HESS J1303-631 195.74 −63.20 L 0.0 L
MSH 15-52 228.53 −59.16 0.408 0.7 1.0
HESS J1023-575 155.83 −57.76 L 0.0 L
HESS J1616-508 243.78 −51.40 0.166 2.4 2.0
HESS J1632-478 248.04 −47.82 0.108 3.0 2.0
Vela X 128.75 −45.60 L 0.0 L
Geminga 98.48 17.77 L 0.0 L
Crab Nebula 83.63 22.01 0.556 1.1 2.8
MGRO J2019+37 305.22 36.83 0.224 3.5 3.6

Star-formation region Cyg OB2 308.08 41.51 0.135 4.2 3.4

Supernova remnant RCW 86 220.68 −62.48 0.582 0.5 1.0
RX J0852.0-4622 133.00 −46.37 L 0.0 L
RX J1713.7-3946 258.25 −39.75 0.042 5.3 2.2
W28 270.43 −23.34 0.159 4.3 2.2
IC443 94.18 22.53 L 0.0 L
Cas A 350.85 58.81 0.261 2.0 3.4
TYCHO 6.36 64.18 L 0.0 L

Starburst/radio galaxy Cen A 201.37 −43.02 0.629 1.0 2.6
M87 187.71 12.39 0.438 1.8 2.6
3C 123.0 69.27 29.67 0.379 2.2 3.0
Cyg A 299.87 40.73 0.276 2.6 3.4
NGC 1275 49.95 41.51 0.479 1.0 3.8
M82 148.97 69.68 0.251 0.8 2.0

Seyfert galaxy ESO 139-G12 264.41 −59.94 0.096 3.0 2.0

HMXB/mqso Cir X-1 230.17 −57.17 0.372 0.8 1.0
GX 339-4 255.70 −48.79 0.052 4.3 2.2
LS 5039 276.56 −14.83 0.444 1.7 2.2
SS433 287.96 4.98 0.086 8.7 3.8
HESS J0632+057 98.25 5.80 L 0.0 L
Cyg X-1 299.59 35.20 0.382 2.2 3.6
Cyg X-3 308.11 40.96 0.137 4.2 3.4
LSI 303 40.13 61.23 L 0.0 L

Massive star cluster HESS J1614-518 63.58 −51.82 0.330 1.3 1.6

Note. The objects are grouped by type, and within each type are sorted by increasing declination. The type, common name, and equatorial coordinates (J2000) are
shown for each object. Where non-null ( >n̂ 0s ) results are found, the pre-trial significance ppre and best fit n̂s and ĝ are given.
a Most significant source in the catalog, yielding ppost=36%.
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