25 research outputs found
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (ORâ=â2.44, Pâ=â0.034 and ORâ=â3.79; Pâ=â0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (ORâ=â1.96; Pâ=â0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCMâ/â patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
Recommended from our members
M & V Shootout: Setting the Stage For Testing the Performance of New Energy Baseline:
Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, todayâs methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming data acquisition and often do not deliver results until years after the program period has ended. A spectrum of savings calculation approaches are used, with some relying more heavily on measured data and others relying more heavily on estimated or modeled data, or stipulated information.
The rising availability of âsmartâ meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. Energy management and information systems (EMIS) technologies, not only enable significant site energy savings, but are also beginning to offer M&V capabilities. This paper expands recent analyses of public-domain, whole-building M&V methods, focusing on more novel baseline modeling approaches that leverage interval meter data. We detail a testing procedure and metrics to assess the performance of these new approaches using a large test dataset. We also provide conclusions regarding the accuracy, cost, and time trade-offs between more traditional M&V and these emerging streamlined methods. Finally, we discuss the potential evolution of M&V to better support the energy efficiency industry through low-cost approaches, and the long-term agenda for validation of building energy analytics
Recommended from our members
Big-Data for Building Energy Performance: Lessons from Assembling a Very Large National Database of Building Energy Use
Rearrangements involving 12q in myeloproliferative disorders: possible role of HMGA2 and SOCS2 genes
International audienceWe report two cases of translocation associated with deletion on derivative chromosomes in atypical myeloproliferative disorder (MPD). In a MPD with t(3;12)(q29;q14), the rearrangement targeted the HMGA2 locus at 12q14 and deleted a region of about 1.5 megabases (Mb) at 3q29. In an MPD with t(9;12)(q13 approximately q21;q22) and JAK2 V617F mutation, array comparative genomic hybridization delineated a deletion of about 3 Mb at 9q13 approximately q21 and a deletion of about 2 Mb at 12q22 containing SOCS2. These results show that close examination of translocations in hematopoietic diseases may reveal associated microdeletions. The role of these deletions is discussed
Accuracy of Automated Measurement and Verification (M&V) Techniques for Energy Savings in Commercial Buildings:
Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, todayâs methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of âsmartâ meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as âM&V 2.0â, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs.
This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure by evaluating the accuracy of ten baseline energy use models, against measured data from a large dataset of 537 buildings. The results of this study show that the already available advanced interval data baseline models hold great promise for scaling the adoption of building measured savings calculations using Advanced Metering Infrastructure (AMI) data. Median coefficient of variation of the root mean squared error (CV(RMSE)) was less than 25% for every model tested when twelve months of training data were used. With even six months of training data, median CV(RMSE) for daily energy total was under 25% for all models tested. These findings can be used to build confidence in model robustness, and the readiness of these approaches for industry uptake and adoptio
Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma
International audienc