483 research outputs found
Reconstruction of eolian bed forms and paleocurrents from cross-bedded strata at Victoria Crater, Meridiani Planum, Mars
Outcrop exposures imaged by the Opportunity rover at Victoria Crater, a 750 m diameter crater in Meridiani Planum, are used to delineate sedimentary structures and further develop a dune-interdune depositional model for the region. The stratigraphy at Victoria Crater, observed during Opportunity's partial traverse of its rim, includes the best examples of meter-scale eolian cross bedding observed on Mars to date. The Cape St. Mary promontory, located at the southern end of the rim traverse, is characterized by meter-scale sets of trough cross bedding, suggesting northward migrating sinuous-crested bed forms. Cape St. Vincent, which is located at the opposite end of the traverse, shows tabular-planar stratification indicative of climbing bed forms with meter- to decameter-scale dune heights migrating southward. Promontories located between Cape St. Mary and Cape St. Vincent contain superposed stratigraphic units with northward and southward dipping beds separated by outcrop-scale bounding surfaces. These bounding surfaces are interpreted to be either reactivation and/or superposition surfaces in a complex erg sea. Any depositional model used to explain the bedding must conform to reversing northward and southward paleomigration directions and include multiple scales of bed forms. In addition to stratified outcrop, a bright diagenetic band is observed to overprint bedding and to lie on an equipotential parallel to the preimpact surface. Meter-scale cross bedding at Victoria Crater is similar to terrestrial eolian deposits and is interpreted as a dry dune field, comparable to Jurassic age eolian deposits in the western United States
Simulations of the Mid-Pliocene Warm Period Using Two Versions of the NASA-GISS ModelE2-R Coupled Model
The mid-Pliocene Warm Period (mPWP) bears many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change (IPCC, 2007). Both marine and terrestrial data point to high-latitude temperature amplification, including large decreases in sea ice and land ice, as well as expansion of warmer climate biomes into higher latitudes. Here we present our most recent simulations of the mid-Pliocene climate using the CMIP5 version of the NASAGISS Earth System Model (ModelE2-R). We describe the substantial impact associated with a recent correction made in the implementation of the Gent-McWilliams ocean mixing scheme (GM), which has a large effect on the simulation of ocean surface temperatures, particularly in the North Atlantic Ocean. The effect of this correction on the Pliocene climate results would not have been easily determined from examining its impact on the preindustrial runs alone, a useful demonstration of how the consequences of code improvements as seen in modern climate control runs do not necessarily portend the impacts in extreme climates.Both the GM-corrected and GM-uncorrected simulations were contributed to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. The corrected version yields results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene, especially the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea, which in the new simulation appears to be far more realistic than previously found with older versions of the GISS model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterisations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate
Probing the axion-nucleon coupling with the next generation of axion helioscopes
A finite axion–nucleon coupling, nearly unavoidable for QCD axions, leads to the production of axions via the thermal excitation and subsequent de-excitation of 57Fe isotopes in the sun. We revise the solar bound on this flux adopting the up to date emission rate, and investigate the sensitivity of the proposed International Axion Observatory IAXO and its intermediate stage BabyIAXO to detect these axions. We compare different realistic experimental options and discuss the model dependence of the signal. Already BabyIAXO has sensitivity far beyond previous solar axion searches via the nucleon coupling and IAXO can improve on this by more than an order of magnitude
Exploring the Levinthal limit in protein folding
According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.FCT - Foundation for Science and Technology, Portugal [UID/Multi/04326/2013]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientia co e Tecnologico (CNPq
Modelling regional land change scenarios to assess land abandonment and reforestation dynamics in the Pyrenees (France)
International audienceOver the last decades and centuries, European mountain landscapes have experienced substantial transformations. Natural and anthropogenic LULC changes (land use and land cover changes), especially agro-pastoral activities, have directed influenced the spatial organization and composition of European mountain landscapes. For the past 60 years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population. Stakeholders, to better anticipate future changes, need spatially and temporally explicit models to identiy areas at risk of land change and possible abandonment. This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains, based on historical LULC trands and a range of future socio-economic drivers. The proposed methodology considers local specificities of Pyrenan valleys, sub-regional climate and topographical properties, and regional economic policies. Results indicate that some regions are projected to face strong abandonment, regardless of scenario conditions. Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive (agricultural and/or pastoral) production and profitability. The combination of the results for the four scenarios allows assessements of where encroachment (e.g. colonization by shrublands) and reforestation are the most probable. This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions
Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project
Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5
Mantle redox state drives outgassing chemistry and atmospheric composition of rocky planets
Volcanic degassing of planetary interiors has important implications for their corresponding atmospheres. The oxidation state of rocky interiors affects the volatile partitioning during mantle melting and subsequent volatile speciation near the surface. Here we show that the mantle redox state is central to the chemical composition of atmospheres while factors such as planetary mass, thermal state, and age mainly affect the degassing rate. We further demonstrate that mantle oxygen fugacity has an effect on atmospheric thickness and that volcanic degassing is most efficient for planets between 2 and 4 Earth masses. We show that outgassing of reduced systems is dominated by strongly reduced gases such as H2, with only smaller fractions of moderately reduced/oxidised gases (CO, H2O). Overall, a reducing scenario leads to a lower atmospheric pressure at the surface and to a larger atmospheric thickness compared to an oxidised system. Atmosphere predictions based on interior redox scenarios can be compared to observations of atmospheres of rocky exoplanets, potentially broadening our knowledge on the diversity of exoplanetary redox states
Intelligent Financial Fraud Detection Practices: An Investigation
Financial fraud is an issue with far reaching consequences in the finance
industry, government, corporate sectors, and for ordinary consumers. Increasing
dependence on new technologies such as cloud and mobile computing in recent
years has compounded the problem. Traditional methods of detection involve
extensive use of auditing, where a trained individual manually observes reports
or transactions in an attempt to discover fraudulent behaviour. This method is
not only time consuming, expensive and inaccurate, but in the age of big data
it is also impractical. Not surprisingly, financial institutions have turned to
automated processes using statistical and computational methods. This paper
presents a comprehensive investigation on financial fraud detection practices
using such data mining methods, with a particular focus on computational
intelligence-based techniques. Classification of the practices based on key
aspects such as detection algorithm used, fraud type investigated, and success
rate have been covered. Issues and challenges associated with the current
practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and
Privacy in Communication Networks (SecureComm 2014
U.S. stock market interaction network as learned by the Boltzmann Machine
We study historical dynamics of joint equilibrium distribution of stock
returns in the U.S. stock market using the Boltzmann distribution model being
parametrized by external fields and pairwise couplings. Within Boltzmann
learning framework for statistical inference, we analyze historical behavior of
the parameters inferred using exact and approximate learning algorithms. Since
the model and inference methods require use of binary variables, effect of this
mapping of continuous returns to the discrete domain is studied. The presented
analysis shows that binarization preserves market correlation structure.
Properties of distributions of external fields and couplings as well as
industry sector clustering structure are studied for different historical dates
and moving window sizes. We found that a heavy positive tail in the
distribution of couplings is responsible for the sparse market clustering
structure. We also show that discrepancies between the model parameters might
be used as a precursor of financial instabilities.Comment: 15 pages, 17 figures, 1 tabl
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
- …