2,826 research outputs found

    "Unknown" Students on College Campuses: An Exploratory Analysis

    Get PDF
    Examines data from three campuses to identify college students falling into the "race/ethnicity unknown" category. Provides recommendations for increasing demographic accuracy, and measuring the success of underrepresented students in higher education

    Palatability of teff grass by horses

    Get PDF
    Most forages commonly used to feed horses have potential detriments including blister beetles or excessive fiber concentrations. Teff grass (T), a warm-season annual forage, has the potential to be a good alternative for horses because of its lack of observed disorders. Our objective was to compare preference by horses for T harvested under different conditions with that of bermudagrass (B) harvested at two maturities. Six different forages were evaluated: T harvested at the late vegetative stage (TLV), at late bloom but that incurred 33 mm of rainfall between mowing and baling (TLBR), with caryopsis visible (TES), or at soft dough (TSD), and B harvested at late vegetative (BLV) and mid-bloom (BMB) growth stages. Five mature horses were used in a balanced incomplete block design where each horse received a different combination of 4 forages each day for 6 d. The 4 different forages were suspended in hay nets in each corner of each stall, and each hay was offered at 50% of the average daily hay consumption measured during a 12-d adaptation period. Forage preference as measured by individual forage dry matter (DM) consumption (kg and % of total DM consumed across the 4 forages) was greatest (P \u3c 0.05) from TLV followed by BLV. Preference (kg and % of total DM consumed) of BMB was greater (P \u3c 0.05) than that of TMBR, TES, and TSD, which did not differ from each other (P ≥ 0.63). Therefore, within a specific growth stage, horses apparently preferred teff grass, but effects of maturity and rainfall had a more dramatic effect on preference by horses than forage species

    Polymer electrolyte composition

    Get PDF
    Patente Internacional nº US 7,354,531 B2A composition for use as a polymer electrolyte, wherein said composition includes one or more polar materials and one or more polyesters of formula III (see document) wherein each unit A may be identical or different and is of the structure IV (see document) wherein each unit B may be identical or different and is of the structure V (see document) wherein R and R´are each, independently, .....Shell Oil Company, Houston, Texas, US

    Evidence for Pre-Existing Dust in the Bright Type IIn SN 2010jl

    Get PDF
    SN 2010jl was an extremely bright, Type IIn SNe which showed a significant IR excess no later than 90 days after explosion. We have obtained Spitzer 3.6 and 4.5 \mum and JHK observations of SN 2010jl \sim90 days post explosion. Little to no reddening in the host galaxy indicated that the circumstellar material lost from the progenitor must lie in a torus inclined out of the plane of the sky. The likely cause of the high mid-IR flux is the reprocessing of the initial flash of the SN by pre-existing circumstellar dust. Using a 3D Monte Carlo Radiative Transfer code, we have estimated that between 0.03-0.35 Msun of dust exists in a circumstellar torus around the SN located 6 \times 10 ^17 cm away from the SN and inclined between 60-80\cdot to the plane of the sky. On day 90, we are only seeing the illumination of approximately 5% of this torus, and expect to see an elevated IR flux from this material up until day \sim 450. It is likely this dust was created in an LBV-like mass loss event of more than 3 Msun, which is large but consistent with other LBV progenitors such as {\eta} Carinae.Comment: Accepted in A

    FLUORESCENCE STUDIES ON PHOTOSYNTHETIC PIGMENT DEVELOPMENT IN RHODOPSEUDOMONAS SPHEROIDES * , †

    Full text link
    When bleached, aerobically grown cells of Rhodopseudomonas spheroides are transferred to semi-aerobic conditions to induce bacteriochlorophyll synthesis, a new fluorescence band, with a maximum at 790 nm, is observed in addition to the 885 nm emission maximum normally seen in pigmented cells. The 790 nm fluorescence may be due to bacterio-chlorophyll which has not been bound into the chromatophore membrane. The quantum yield of the 885 nm fluorescence is at first relatively high and then, about 1 hour after transfer, drops to the level found in pigmented photosynthetic cells. The coupling to the rest of the photo-synthetic apparatus, as indicated by the effect of dithionite on the fluorescence, also seems to occur during the first hour of pigment development, which suggests that the onset of fluorescence quenching is due at least in part to the synthesis of photochemical reaction centers. Continuation of these studies should provide new information on the formation, structure and molecular interactions of the pigments and the photosynthetic membranes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73322/1/j.1751-1097.1968.tb08021.x.pd

    Are Ti44-Producing Supernovae Exceptional?

    Get PDF
    According to standard models supernovae produce radioactive 44^{44}Ti, which should be visible in gamma-rays following decay to 44^{44}Ca for a few centuries. 44Tiproductionisbelievedtobethesourceofcosmic^{44}Ti production is believed to be the source of cosmic ^{44}Ca,whoseabundanceiswellestablished.Yet,gammaraytelescopeshavenotseentheexpectedyoungremnantsofcorecollapseevents.TheCa, whose abundance is well established. Yet, gamma-ray telescopes have not seen the expected young remnants of core collapse events. The ^{44}TimeanlifeofTi mean life of \tau \simeq89yandtheGalacticsupernovarateof 89 y and the Galactic supernova rate of \simeq3/100yimply 3/100 y imply \simeqseveraldetectable several detectable ^{44}Ti gamma-ray sources, but only one is clearly seen, the 340-year-old Cas A SNR. Furthermore, supernovae which produce much 44TiareexpectedtooccurprimarilyintheinnerpartoftheGalaxy,whereyoungmassivestarsaremostabundant.BecausetheGalaxyistransparenttogammarays,thisshouldbethedominantlocationofexpectedgammaraysources.YettheCasASNRastheonlyonesourceislocatedfarfromtheinnerGalaxy(atlongitude112degree).Weevaluatethesurprisingabsenceofdetectablesupernovaefromthepastthreecenturies.WediscusswhetherourunderstandingofSNexplosions,their^{44}Ti are expected to occur primarily in the inner part of the Galaxy, where young massive stars are most abundant. Because the Galaxy is transparent to gamma-rays, this should be the dominant location of expected gamma-ray sources. Yet the Cas A SNR as the only one source is located far from the inner Galaxy (at longitude 112 degree). We evaluate the surprising absence of detectable supernovae from the past three centuries. We discuss whether our understanding of SN explosions, their ^{44}Ti yields, their spatial distributions, and statistical arguments can be stretched so that this apparent disagreement may be accommodated within reasonable expectations, or if we have to revise some or all of the above aspects to bring expectations in agreement with the observations. We conclude that either core collapse supernovae have been improbably rare in the Galaxy during the past few centuries, or 44Tiproducingsupernovaeareatypicalsupernovae.Wealsopresentanewargumentbasedon^{44}Ti-producing supernovae are atypical supernovae. We also present a new argument based on ^{44}Ca/Ca/^{40}CaratiosinmainstreamSiCstardustgrainsthatmaycastdoubtonmassiveHecapTypeIsupernovaeasthesourceofmostgalacticCa ratios in mainstream SiC stardust grains that may cast doubt on massive-He-cap Type I supernovae as the source of most galactic ^{44}$Ca.Comment: 23 pages, 14 figures, accepted for publication in Astronomy and Astrophysics 2006. Correcting the SN type of Tycho in Table B.1. and add its associated reference

    Imaging Technologies Build Capacity and Accessibility in Phytoplankton Species Identification Expertise for Research and Monitoring: Lessons Learned During the COVID-19 Pandemic

    Get PDF
    As primary producers, phytoplankton play an integral role in global biogeochemical cycles through their production of oxygen and fixation of carbon. They also provide significant ecosystem services, by supporting secondary production and fisheries. Phytoplankton biomass and diversity have been identified by the Global Ocean Observing System (GOOS) as Essential Ocean Variables (EOVs), properties that need to be monitored to better understand and predict the ocean system. Phytoplankton identification and enumeration relies on the skills and expertise of highly trained taxonomic analysts. The training of new taxonomic analysts is intensive and requires months to years of supervised training before an analyst is able to independently and consistently apply identification skills to a sample. During the COVID-19 pandemic, access to laboratories was greatly restricted and social distancing requirements prevented supervised training. However, access to phytoplankton imaging technologies such as the Imaging FlowCytobot (IFCB), FlowCam, and PlanktoScope, combined with open online taxonomic identification platforms such as EcoTaxa, provided a means to continue monitoring, research, and training activities remotely when in-person activities were restricted. Although such technologies can not entirely replace microscopy, they have a great potential for supporting an expansion in taxonomic training, monitoring, surveillance, and research capacity. In this paper we highlight a set of imaging and collaboration tools and describe how they were leveraged during laboratory lockdowns to advance research and monitoring goals. Anecdotally, we found that the use of imaging tools accelerated the training of new taxonomic analysts in our phytoplankton analysis laboratory. Based on these experiences, we outline how these technologies can be used to increase capacity in taxonomic training and expertise, as well as how they can be used more broadly to expand research opportunities and capacity

    A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris

    Get PDF
    The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous ldquobridgesrdquo. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections

    Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    Get PDF
    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.Comment: 21 pages, 4 tables, 16 figure
    corecore