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Abstract. The three dimensional organization of the 
complete photosynthetic apparatus of the extremely halo- 
philic, bacteriochlorophyll b containing Ectothiorhodospira 
halochloris has been elaborated by several techniques of 
electron microscopy. Essentially all thylakoidal sacs are disc 
shaped and connected to the cytoplasmic membrane by 
small membraneous "bridges". In sum, the lumina of all 
thylakoids (intrathylakoidal space) form one common 
periplasmic space. Thin sections confirm a paracrystalline 
arrangement of the photosynthetic complexes in situ. The 
ontogenic development of the photosynthetic apparatus is 
discussed based on a structural model derived from serial 
thin sections. 
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Eetothiorhodospira halochtoris is one of the few photosyn- 
thetic bacteria containing bchl b (Drews and Giesbrecht 
1966; Eimhjellen et al. 1963; Neutzling and Trtiper 1982; 
Eimhjellen 1970; Imhoff and Trfiper 1981). Electron 
micrographs of negatively stained cells show that in- 
tracytoplasmic stacks of  thylakoidal sacs are the dominant 
internal structures (Imhoff and Trfiper 1977). Detailed 
structural investigations of isolated photosynthetic mem- 
branes of E. halochloris led to almost molecular resolution 
of the three dimensional structure of the hexagonally packed 
photosynthetic complexes (Engelhardt et al. 1983). Besides 
this, no other data about the in situ arrangement of the 
membranes are available. One reason may be that it is very 
difficult to get adequate preparations of extremely halophilic 
organisms, which are osmotically very sensitive (Raymond 
and Sistrom 1967). However, a complete three dimensional 
reconstruction of the photosynthetic apparatus is necessary, 
not only for discussion of ontogenetic aspects but also for a 
better understanding of photosynthesis in bacteria. This is 
in particular important regarding details of Mitchell's 
chemiosmotic hypothesis and comparison to photosynthesis 
in procaryotes. It is a fundamental difference whether the 
thylakoids develop as invaginations from the cytoplasmic 
membrane and are finally pinched off ("closed system"), or 
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are permanently in continuity with the cytoplasmic mem- 
brane ("open system"), as discussed by Remsen et al. (1968). 

Here we report several new observations concerning 
the organisation of the photosynthetic apparatus of 
E.halochloris within the intact cells. For this purpose we 
applied isoosmotic fixation, thin sectioning and serial 
sectioning techniques for three dimensional reconstruction, 
and morphometry for quantification and comparison of 
structural parameters with biochemical data (Steiner and 
Scheer 1985; Steiner 1985). 

Material and methods 

Organism and culture conditions 

Stock cultures of Ectothiorhodospira (E.) halochloris 
(DSMI059) were kindly provided by Dr. J. F. Imhoff, 
Bonn. E. halochloris was cultivated anaerobically by trans- 
ferring 1.5 1 of exponentially growing bacteria in 13.5 1 
freshly prepared saline medium in 15 1 flasks at 35 ~ C. The 
basal medium of Imhoff and Triiper (1977) was modified by 
removal of sodium sulfate and the vitamin solution. The 
organisms were grown under constant illumination with 
1700 lux (at the surface of the culture) and agitated gently 
with a magnetic stirrer for homogenous distribution. The 
cells were harvested 20 days after inoculation by centrifuga- 
tion (30 min at 10,000 x g). Protein concentration was deter- 
mined by the Coomassie Brillant Blue technique (Bio-Rad 
method). 

Bacteriochlorophyll b (Bchl b) was quantitatively ex- 
tracted by the method of Strain and Svec (1966), paying 
attention, that the samples were kept in the dark to inhibit 
any photoreaction (Steiner et al. 1983). Extinction 
coefficients were determined after the light induced 
conversion of bchlb to 3-devinyl-3-acetylchlorophylla 
under strictly unaerobic conditions as described in detail 
(Steiner et al. 1983) and compared to those described for 
bchl a (Sauer et al. 1966; Gottstein 1984). Absorption 
spectra were recorded either on a spectrophotometer 
DMR22 (Zeiss, Oberkochen, FRG) or a PE320 (Perkin 
Elmer, Uberlingen, FRG). 

Electron microscopy and morphometry 

Freshly harvested cells were fixed for 120 min at room tem- 
perature with 3% glutardialdehyde in fixative buffer 
(100 mM sodium caeodylate, 2 mM MgC12, 2.4 M NaC1, 
pH = 9.0). After the cells had been rinsed several times with 
the same buffer, they were postfixed for 2 h in 2% osmium 
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tetraoxide in fixative buffer. The fixed cells were dehydrated 
in acetone/saline buffer (2.4 M NaC1) in the following steps: 

acetone concentration 
O% 

20% 
4O% 
4O% 
4O% 
4O% 
40% 
6O% 
8O% 

100% 

For enbloc staining the cells were incubated with 1% uranyl 
magnesium acetate in 20% acetone/80% buffer for 60 rain. 
They were infiltrated and embedded in Spurr's low viscosity 
resin (Spurt 1969). Thin layers of  resin-infiltrated cells were 
polymerized on glass slides for light microscopy and docu- 
mentation. Silvergrey and grey sections were cut with a 
diamond knife on a LKB Ultrotome II and mounted either 
on uncoated or Formvar-coated copper grids. The sections 
were poststained with aqueous lead citrate (3%, pH = 13.0). 
All pictures were taken with a Elmiskop 101 (Siemens) 
electron microscope. Morphometric measurements were 
made with a semi-automated measuring device (Kontron 
MOP AM 02). 

final NaCl eoncentration 
2.4 M 
1.9 M 
1.44 M 
0.72 M 
0.36 M 
0.18M 

Negative staining 

For negative staining, suspensions of whole cells or isolated 
chromatophores were used directly or after stabilization 
with 1% glutardialdehyde in 25 mM tricine buffer (pH = 
7.0). Drops of the suspension were placed either on carbon- 
coated copper grids or on graphite oxide-covered holey 
carbon films as described by Formanek (1979). Negative 
staining was achieved with 1% potassium phosphotungstate 
(pH = 6.8). 

Results 

Ultrastructural observations 

As described in detail by Imhoff  and Triiper (1977), cells of 
Ectothiorhodospira halochloris appear bipolary flagellated, 
spiral shaped with a length ranging from 2.5 to 8.0 pm and 
a diameter of about 0.5 gm. Under our culture conditions 
of exponential growth, the cells were about 4.0 gm long 
and immobile when observed by phase contrast microscopy. 
Negative staining of whole E. haloehloris cells confirmed that 
the cells were not flagellated. It seems to be a significant 
feature for E. halochloris that many cellular parameters like 
size, shape or flagellation depend on cultural and/or environ- 
mental conditions. The examination of cells directly 
sedimented on coated copper grids and then negatively 
stained was found to be difficult due to deposits of sulfur at 
the cell surface and to crystallization of NaC1. Washing of 
the cells in order to remove excess salt and sulfur resulted 
on one hand in a better resolution, but on the other it 
caused swelling and bursting. In this case the "stacks" of 
photosynthetic membranes formed rows of overlapping 
discs (Fig. 1). 

Thin sectioning of whole cells confirmed the regular 
array of thylakoidal membranes (Fig. 2). The architecture 

Table 1. Cellular parameters of Eetothiorhodospira halochloris under 
cultural conditions as described in Material and methods 

Number of cells per ml: 3.7 x 108 
Cell length (pro): 4 ___ 1 
Cell diameters (pro): (elliptical) 0.4 +0.1 x 0.7_+0.2 

Protein content per cell (~tg): 18.3 
Bchl b content per cell (moles): 2.25 x 10 -iv 

Thylakoidal stacks per cell: 7 + 1 
Sacs per thylakoidal stack: 16 + 2 
Mean sac diameter (gm): 0.45 + 0.2 

Thickness of thylakoid membranes (rim): 3 __. 0.3 
Intrathylakoidal space (rim): 5 + 1 
Interthylakoidal space (nm): 2 + 0.3 

Total area of thylakoid membranes 
per cell (gm2): 36 

Cytoplasmic membrane area 
per cell (gin 2) : 8 

Number of photosynthetic complexes 
per cell: 2.5 x 105- 3.0 x 10 s 

Number of Bchl b molecules 45 - 54 a 
per photosynthetic complex: 34 b 

" Calculated from morphometric data 
b Calculated from biochemical data (Steiner 1985; Steiner and Scheer 
1985) 

of the envelope, however, seemed to be unusual. The cross- 
sectioned cell wall was alternatingly electron dense and 
transparent (Fig. 2). When tangentionally sectioned an ir- 
regular array of electron transparent, ovoid patches (diame- 
ter 30nm) was striking (Fig. 3). Occasionally a few 
"thylakoid sacs" lay isolated close to disrupted cells; their 
typical hexagonal array of photosynthetic complexes was 
clearly visible. At areas of overlapping thylakoids a Moir6 
pattern was observed (Fig. 4, star). Structural features 
(arrows in Fig. 4) suggest that the thylakoidal sacs have 
openings. The projection area of  a typical sac was about 
0.2 gm. Frequently larger membrane sheets (up to 2 I~m) 
were observed with a similar hexagonal distribution of 
photosynthetic complexes (Engelhardt et al. 1983). We 
therefore assume that these sheets represent large fragments 
of the cytoplasmic membranes which consequently should 
be homologous to thylakoid membranes. 

The application of conventional fixation and embedding 
techniques on extremely halophilic organisms is rather pro- 
blematic (Raymond and Sistrom 1967, 1969). Washing of 
the cells bears the risk of swelling and other artificial dis- 
arrangement. Even stepwise dilution of washing buffer with 
water leads to swelling of the cells. 

Satisfactory results were obtained, however, by stepwise 
dehydration in parallel with reduction of the osmolarity (to 
prevent crystallization). Isoosmotically fixed cells differed 
from "osmotically stressed" preparations by intense staining 
of the intrathylakoidal space and by its minimal thickness 
(Figs. 2 and 5). 

In a longitudinal section the cells of E.halochloris 
appeared spirillum shaped; in each bend one thylakoid stack 
dominated. The length of the cells was obviously correlated 
with the number of  stacks with an average diameter of  about 
0.45 gm (Table 1). Each stack consisted of about 16 single 
thylakoids adhering closely to each other. The thylakoid 
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Figs. 1 and 2. Electron micrographs of cells of Ectothiorhodospira halochloris. In negatively stained preparations (Fig. I) the cells burst 
during drainage and the stacks form rows of overlapping discs. The altering electron dense architecture of the cell wall is striking in 
Longitudinal sections of Fig. 2 (see arrow) 

membranes had a thickness of 3 +0.3 nm and were 
separated by an interspace of 5 _+ 1 nm. The total thickness 
of one stack was about 0.3 gm, so that one stack filled most 
of the cross-section area of the cell. 

The thylakoid membrane appeared granulated with a 
periodicity of 3.6 nm, which was more evident after 
photographic superposition (Figs. 6 and 7). This periodicity 

is interpreted as a average value of superimposed antenna- 
antenna and antenna-reaction center complexes (about one 
third of the diameter of one photosynthetic complex). This is 
in coincidence with the structural data of the photosynthetic 
complexes determined from isolated, freeze dried photo- 
synthetic membranes after high resolution shadowing 
(Engelhardt et al. 1983, 1985). Obviously the high degree of 



270 

Fig. 3. Tangentional section of Eetothiorhodospira halochloris illustrating the unusual architecture of the cell wall in projection (compare to 
Fig. 2). The ovoid patches are irregularily ordered but similar in size (diameter about 30 nm) 

Fig. 4. Whole thylakoidal sacs of negatively stained preparations frequently showing openings (see arrows). In regions of overlapping 
membranes a Moire pattern is visible (star) 

order, as seen in negatively stained or freeze dried prepara- 
tions, is realized as well in the living cells. Using an area 
of 132 nm z of one photosynthetic complex in one living 
E.halochloris cell (4.0 pm long) it can be calculated that 
appx. 275,000 photosynthetic complexes are present. 

The Bchl b content is 2.25 x 10-17 M/cell (Table 1). This 
value has been obtained by using an improved extinction 
coefficient of Bchl b, which has been determined from its 
anaerobic conversion to 3-devinyl-3-acetylchlorophylla 
(Steiner et al. 1983) (Table 2). A ratio of about 30 molecules 
of  Bchl b per photosynthetic complex is calculated from 
these data. This is in good agreement with earlier results, 
where a minimum of five Bchl b per one light harvesting 
complex were estimated from circular dichroism data 
(Steiner 1985). I f  we assume, in addition, four molecules of  
Bchlb for the RC like in Rhodopseudomonas viridis 
(Deisenhofer et al. 1984) we would arrive at a sum of 
34 molecules in one photosynthetic complex. 

Three dimensional reconstruction of the photosynthetic 
apparatus of Ectothiorhodospira halochloris 

It  is generally accepted, that all bacterial photosynthetic 
membranes are formed initially by invaginations of the 
plasma membrane. The continuity between the two 

membranes persist in some bacteria, in others the photosyn- 
thetic membranes are discussed to pinch off and form 
vesicles (Remsen 1978). For E. halochloris no data were sofar 
available demonstrating the structural relation of thy- 
lakoidal stacks to the plasma membrane. In another species 
of the genus Ectothiorhodospira, E. mobilis (Tr/iper 1968), it 
has been proposed that the thylakoid membrane may be 
connected to the plasma membrane. Whether these 
connections are temporary or permanent is an open question 
(Remsen 1978). 

We have applied the serial thin section technique for 
reconstruction of four complete stacks of the photosynthetic 
apparatus of  E. haloehloris. 

The serial thin sections showed clearly, that at least 90% 
of the thylakoid membranes were connected with the 
cytoplasmic membrane (Fig. 5 A - D ) .  These membranous 
connections were about 50 -100  nm wide. Thylakoids of 
one stack are not connected in "one row", but rather formed 
fan-like structures, as shown in Fig. 8. Occasionally 
connections to the opposite side could be observed (Fig. 8); 
however, multiple connections of one thylakoid membrane 
with the cytoplasmic membrane were never observed. From 
geometrical considerations of the stack structure it becomes 
evident, that about 1 0 -  20% of the cell cross-sections should 
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Fig. 5 A - D .  Serial cross-sections (section thickness: 50 nm) illustrating that the thylakoidal sacs are attached to one another and are 
connected to the cytoplasmic membrane (A-D) .  The edges of the thylakoidal sacs are typically "swollen" (see a r r o w s  in D. The in- 
trathylakoidal space is in connection to the periplasmic space. An outer membrane is clearly visible (see a r r o w s  in A and C). Electron dense 
deposits (sulfur?) are typical for isoosmotically fixed cells (B, s t a r )  

show tangent ional ly  sectioned connections,  where the mem- 
brane cont inui ty  is obscured.  Therefore we conclude that,  
in principle, all thy lakoid  membranes  are connected to the 
cytoplasmic  membrane.  

The diameter  was not  constant  for all the thylakoids,  but  
showed a decrease to the upper  and lower end of  the stacks 
(Fig. 5) which is p robab ly  related to the opt imal  fitt ing of  
the stack into the elliptical profile of  the cell cross-section. 
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Figs. 6 and 7. High magnification of the thylakoid membranes showing periodic structures (Fig. 6). After photographic superposition the 
high degree of order of photosynthetic subunits is clearly visible (Fig. 7; six exposure steps - between each a random shift parallell to the 
thylakoids) 

TaMe 2. Extinction coefficients 

Bacteriochlorophyll a (Sauer et al. 1966) 

2max (rim) 
(in ether): 770 573 392 357 

s• 96.0 22.0 47-1  73.4 

3-Acetyl-3-devinyl-chlorophyll a (Smith and Calvin 1966) 

2max (nm) 
(in acetone): 677 628 591 538 505 436 

8• 65.2 12.8 8.1 4.3 2.8 76.1 

Bacteriochlorophyll b (Steiner 1985) 

2~x (nm) 
(in ether): 794 676 578 408 368 

exl03:  106 13.7 26.5 77.4 85.7 

388 
51.3 

The data obtained for Bchl b are in fair agreement with those 
reported earlier (e790 nm = 122,000 in acetone/methanol, Garcia et 
al. 1968; el015 nm = 144,000, Clayton 1966; Clayton and Clayton 
1978) 

Obviously due to the membrane flexibility, the edges o f  
the thylakoids were thicker than the inner parts (Fig. 5D, 
arrows), which causes the characteristic structure of  the 
stack. 

Some of  the cells showed a very electron dense tilling 
of  the intrathylakoidal space (Fig. 5). This was observed 

Fig. 8. Three dimensional reconstruction of a complete thylakoidal 
stack, based on serial electron micrographs. The connections of the 
thylakoidal sacs to the cytoplasmic membrane are indicated by 
a r r o w s  

more often with improvement o f  isoosmotic fixation and 
dehydration (see Material and methods). Therefore, we 
suppose that the osmiophilic filling is a characteristic feature 
of  the living cell and washed out during conventional fixa- 
tion and/or dehydration. There was no difference in staining 
of  the intrathylakoidal space from that of  the periplasmic 
space (Fig. 5). The continuity o f  the osmiophilic substance 
across the membranous connections proves not only a 
spatial connection of  the intrathylakoidal space with the 
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periptasmic one, but suggests in addition that they form a 
physiological unit. 

Discussion 

The high degree of biochemical similarities in purple bacteria 
is contrasted by wide variations in the morphology of their 
photosynthetic membranes (Remsen 1978). For a better 
understanding of photosynthesis in bacteria a complete 
structural analysis of the photosynthetic apparatus is neces- 
sary in addition to biochemical and physical determinations. 
Although there is good coincidence in the physicochemical 
aspects of the photosynthesis of various bacterial groups it is 
surprising that the structure of the photosynthetic apparatus 
varies widely (Remsen 1978): in Bchl a containing purple 
bacteria the thylakoids may be arranged as densely packed 
lamellae (Rhodopseudomonas paIustris, Cohen-Bazire and 
Sistrom 1966) or they may be reduced to vesicles which were 
proposed to be free cytoplasmic organelles (Vatter and Wolfe 
1958). In the genus Ectothiorhodospira, the thylakoids are 
arranged as typical lamellar stacks (e.g. Remsen et al. 1968). 

It  is generally accepted that all of these thylakoidal 
structures are formed by invaginations of the cytoplasmic 
membrane. Although membranous continuities of thylakoid 
membranes with the cytoplasmic membrane are con- 
vincingly shown for E. rnobilis, it is not clear, whether these 
continuities represent only a developmental stage or are 
permanent. For detailed applications of Mitchell's 
chemiosmotic hypothesis it is necessary to answer whether 
the thylakoid system is "closed" (isolated vesicles or sacs) 
or "open" (permanent spatial continuity of the in- 
trathylakoidal space with the periplasmic space). Our data 
prove for the first time, that it is a structural principle for 
E.halochloris that all thylakoidal sacs are in continuity 
with each other and with the cytoplasmic membrane (Figs. 5 
and 8). The membranous connections between sacs and the 
thylakoidal membrane are not strongly ordered (Fig. 8) and 
they can be observed at opposite sides of the cytoplasmic 
membrane. We therefore conclude that the initial invagina- 
tion steps occur randomly. The developing thylakoids, how- 
ever, are stabilized by spatial interactions when they come 
in contact with each other. When realizing the highly ordered 
three dimensional relief of the photosynthetic complexes of 
E.halochloris (Engelhardt et al. 1985) it is easy to imagine 
that two attaching thylakoid membranes fit well into one 
another. This is supported by detailed investigations of the 
membrane arrangement in R.viridis (Miller 1979, 1982; 
Welte and Kreutz 1982; Stark et al. 1984; Miller and Jacob 
1985). Beside this steric fitting of the photosynthetic 
complexes, we suppose an additional physical interaction 
of two adjacent thylakoid membranes (hydrophobic/ 
hydrophilic interactions?) to keep the stack system highly 
ordered. (All sacs of one stack are attached to each other 
without any interspace; neighboring sacs have nearly the 
same dimensions and are almost perfectly superposed.) 

A self-arrangement of complete stacks could be realized 
as follows: Randomly formed thylakoid membranes enlarge 
and are stabilized upon coming into contact with neigh- 
boring ones. Since they are in continuity with the cyto- 
plasmic membrane, all tensions of the cell (and cytoplasmic 
membrane) due to movement, division, membrane enlarge- 
ment and mechanical forces should directly influence the 
photosynthetic membranes. Giving the physical interaction 

between thylakoids they could in the beginning compensate 
tensions by sliding against each other, but are fixed to stacks 
when reaching maximal contact (adhesion). Maximal 
contact is realized for sacs of similar size and optimal orien- 
tation; this results in the typical arrangement of the stacking. 

The formation of additional stacks causes a twisting of 
the whole cell and leads to the irregular spirilloid shape 
of E. halochloris which differs from the uniformly twisted 
structures of the Spirillaceae. 

A spiral shape is realized in many different kinds of 
organisms; it is obviously not dependent on a common 
structural principle: the prokaryotic spirochaetes maintain 
their flexible spiriloid shape by axial filaments (axostyle); 
the bacteria of the genus Spirittum, however, are rigid and 
their shape is caused by a special architecture of their murein 
sacculus. In contrast, the less regular shape of E. halochloris 
is explained by an "inner skeleton" of thylakoidal stacks. 

The complete intrathylakoidal space of one cell is contin- 
uous and located "outside" the cytoplasmic membrane 
("periplasmic space"). An additional membrane ("outer 
membrane") obviously is necessary to define this "peri- 
plasmic space" and separate it from both the cytoplasm and 
the environment. This outer membrane should therefore 
play an important role in transport phenomena. 
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