513 research outputs found

    Quantitative surface-enhanced resonance Raman scattering of phthalocyanine-labelled oligonucleotides

    Get PDF
    The evaluation of phthalocyanine labels for the surface-enhanced resonance Raman scattering (SERRS) detection of oligonucleotides is reported. Three phthalocyanine-labelled oligonucleotides were assessed, each containing a different metal centre. Detection limits for each labelled oligonucleotide were determined using two excitation frequencies where possible. Limits of detection as low as 2.8 × 10−11 mol. dm−3 were obtained which are comparable to standard fluorescently labelled probes used in previous SERRS studies. The identification of two phthalocyanine-labelled oligonucleotides without separation was also demonstrated indicating their suitability for multiplexing. This study extends the range of labels suitable for quantitative surface-enhanced resonance Raman scattering with silver nanoparticles and offers more flexibility and choice when considering SERRS for quantitative DNA detection

    Quantitative surface-enhanced resonance Raman scattering of phthalocyanine-labelled oligonucleotides

    Get PDF
    The evaluation of phthalocyanine labels for the surface-enhanced resonance Raman scattering (SERRS) detection of oligonucleotides is reported. Three phthalocyanine-labelled oligonucleotides were assessed, each containing a different metal centre. Detection limits for each labelled oligonucleotide were determined using two excitation frequencies where possible. Limits of detection as low as 2.8 × 10−11 mol. dm−3 were obtained which are comparable to standard fluorescently labelled probes used in previous SERRS studies. The identification of two phthalocyanine-labelled oligonucleotides without separation was also demonstrated indicating their suitability for multiplexing. This study extends the range of labels suitable for quantitative surface-enhanced resonance Raman scattering with silver nanoparticles and offers more flexibility and choice when considering SERRS for quantitative DNA detection

    Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts

    Get PDF
    The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by predators escaping. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory-”plug”. Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell “ghosts” persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as “bacterial skeletons” for housing artificial chromosomes

    External fixation compared to intramedullary nailing of tibial fractures in the rat

    Get PDF
    Background and purpose It is not known whether there is a difference in bone healing after external fixation and after intramedullary nailing. We therefore compared fracture healing in rats after these two procedures

    Efficient clinical-grade γ-retroviral vector purification by high-speed centrifugation for CAR T cell manufacturing

    Get PDF
    γ-Retroviral vectors (γ-RV) are powerful tools for gene therapy applications. Current clinical vectors are produced from stable producer cell lines which require minimal further downstream processing, while purification schemes for γ-RV produced by transient transfection have not been thoroughly investigated. We aimed to develop a method to purify transiently produced γ-RV for early clinical studies. Here, we report a simple one-step purification method by high-speed centrifugation for γ-RV produced by transient transfection for clinical application. High-speed centrifugation enabled the concentration of viral titers in the range of 107-108 TU/mL with >80% overall recovery. Analysis of research-grade concentrated vector revealed sufficient reduction in product- and process-related impurities. Furthermore, product characterization of clinical-grade γ-RV by BioReliance demonstrated two-logs lower impurities per transducing unit compared with regulatory authority-approved stable producer cell line vector for clinical application. In terms of CAR T cell manufacturing, clinical-grade γ-RV produced by transient transfection and purified by high-speed centrifugation was similar to γ-RV produced from a clinical-grade stable producer cell line. This method will be of value for studies using γ-RV to bridge vector supply between early- and late-stage clinical trials

    Little Impact of Antiplatelet Agents on Venous Thromboembolism after Hip Fracture Surgery

    Get PDF
    Since the late 1980s, low dose aspirin has been used to prevent stroke and ischemic heart disease. However, prophylactic effect of antiplatelets against venous thromboembolism (VTE), in patients who undergo hip fracture surgery (HFS) is controversial. Our purpose was to determine the incidence of symptomatic VTE after HFS and to evaluate whether antiplatelets reduce the development of symptomatic VTE following HFS. We retrospectively reviewed 858 HFS in 824 consecutive patients which were performed from May 2003 to April 2010 at an East Asian institute. We compared the incidence of symptomatic VTE in antiplatelet users and non-users using multivariate logistic regression analyses. Overall incidences of symptomatic pulmonary embolism including fatal pulmonary embolism, and symptomatic deep vein thrombosis in this study were 2.4% (21/858), and 3.5% (30/858), respectively. The incidence of symptomatic VTE was 4.8% (12/250) in antiplatelet users and 4.3% (26/608) in non-users (P = 0.718). It is suggested that antiplatelet agents are not effective in prevention of symptomatic VTE after HFS

    Differences in topological progression profile among neurodegenerative diseases from imaging data

    Get PDF
    The spatial distribution of atrophy in neurodegenerative diseases suggests that brain connectivity mediates disease propagation. Different descriptors of the connectivity graph potentially relate to different underlying mechanisms of propagation. Previous approaches for evaluating the influence of connectivity on neurodegeneration consider each descriptor in isolation and match predictions against late-stage atrophy patterns. We introduce the notion of a topological profile - a characteristic combination of topological descriptors that best describes the propagation of pathology in a particular disease. By drawing on recent advances in disease progression modeling, we estimate topological profiles from the full course of pathology accumulation, at both cohort and individual levels. Experimental results comparing topological profiles for Alzheimer's disease, multiple sclerosis and normal ageing show that topological profiles explain the observed data better than single descriptors. Within each condition, most individual profiles cluster around the cohort-level profile, and individuals whose profiles align more closely with other cohort-level profiles show features of that cohort. The cohort-level profiles suggest new insights into the biological mechanisms underlying pathology propagation in each disease

    Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BKCa channel

    Get PDF
    Large-conductance voltage- and Ca2+-activated K+ (BKCa) channel α subunits possess a unique transmembrane helix referred to as S0 at their N terminus, which is absent in other members of the voltage-gated channel superfamily. Recently, S0 was found to pack close to transmembrane segments S3 and S4, which are important components of the BKCa voltage-sensing apparatus. To assess the role of S0 in voltage sensitivity, we optically tracked protein conformational rearrangements from its extracellular flank by site-specific labeling with an environment-sensitive fluorophore, tetramethylrhodamine maleimide (TMRM). The structural transitions resolved from the S0 region exhibited voltage dependence similar to that of charge-bearing transmembrane domains S2 and S4. The molecular determinant of the fluorescence changes was identified in W203 at the extracellular tip of S4: at hyperpolarized potential, W203 quenches the fluorescence of TMRM labeling positions at the N-terminal flank of S0. We provide evidence that upon depolarization, W203 (in S4) moves away from the extracellular region of S0, lifting its quenching effect on TMRM fluorescence. We suggest that S0 acts as a pivot component against which the voltage-sensitive S4 moves upon depolarization to facilitate channel activation
    corecore