129 research outputs found

    Plant and soil communities are associated with the response of soil water repellency to environmental stress

    Get PDF
    A warming climate and expected changes in average and extreme rainfall emphasise the importance of understanding how the land surface routes and stores surface water. The availability and movement of water within an ecosystem is a fundamental control on biological and geophysical activity, and influences many climatic feedbacks. A key phenomenon influencing water infiltration into the land surface is soil hydrophobicity, or water repellency. Despite repellency dictating the speed, volume and pattern of water infiltration, there is still major uncertainty over whether this critical hydrological process is biologically or physicochemically controlled. Here we show that soil water repellency is likely driven by changes in the plant and soil microbial communities in response to environmental stressors. We carried out a field survey in the summers of 2013 to 2016 in a variety of temperate habitats ranging across arable, grassland, forest and bog sites. We found that moderate to extreme repellency occurs in 68% of soils at a national scale in temperate ecosystems, with 92% showing some repellency. Taking a systems approach, we show that a wetter climate and low nutrient availability alter plant, bacterial and fungal community structure, which in turn are associated with increased soil water repellency across a large-scale gradient of soil, vegetation and land-use. The stress tolerance of the plant community and associated changes in soil microbial communities were more closely linked to changes in repellency than soil physicochemical properties. Our results indicate that there are consistent responses to diverse ecosystem stresses that will impact plant and microbial community composition, soil properties, and hydrological behaviour. We suggest that the ability of a biological community to induce such hydrological responses will influence the resilience of the whole ecosystem to environmental stress. This highlights the crucial role of above-belowground interactions in mediating climatic feedbacks and dictating ecosystem health

    RMAVIS v1.0: a Shiny application for the analysis of vegetation survey data and assignment to GB NVC communities

    Get PDF
    RMAVIS is a Shiny application for the assignment of vegetation sample plot data to British National Vegetation Classification (NVC) communities (Rodwell, 1991, 1992a, 1992b, 1995, 2000). The assignment of vegetation sample plot data to established vegetation classification units using computational methods is a well established and recognised practice (Maciejewski et al., 2020). The results of this assignment process are used in various ways, including assisting in the phase 2 habitat survey (or NVC survey) process (Rodwell, 2006); establishing an ecological baseline and identifying important ecological features such as protected habitats (CIEEM, 2022); and in ecological restoration by providing a proxy for historical reference ecosystems to target and against which to measure restoration progress (Gann et al., 2019; Pywell et al., 2002; Sturbois et al., 2023). In Great Britain (GB) the development of computational methods and programs for the assignment of vegetation survey data to NVC communities began with the development of TABLEFIT (Hill, 1989; Marrs, 2019) and was followed by MATCH (Malloch, 1998). The most recent program, the Modular Analysis of Vegetation Information System (MAVIS), was developed as a windows application in 2000 and was a DEFRA-funded output of the ECOFACT project (Bunce et al., 1999), with the latest version released in 2016 (Smart et al., 2016)

    Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area

    Get PDF
    1. Reliable modelling of above-ground Net Primary Production (aNPP) at fine resolution is a significant challenge. A promising avenue for improving process models is to include response and effect trait relationships. However, uncertainties remain over which leaf traits are correlated most strongly with aNPP. 2. We compared abundance-weighted values of two of the most widely used traits from the Leaf Economics Spectrum (Specific Leaf Area and Leaf Dry Matter Content) with measured aNPP across a temperate ecosystem gradient. 3. We found that Leaf Dry Matter Content (LDMC) as opposed to Specific Leaf Area (SLA) was the superior predictor of aNPP (R2=0.55). 4. Directly measured in situ trait values for the dominant species improved estimation of aNPP significantly. Introducing intra-specific trait variation by including the effect of replicated trait values from published databases did not improve the estimation of aNPP. 5. Our results support the prospect of greater scientific understanding for less cost because LDMC is much easier to measure than SLA

    Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts

    Get PDF
    Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin

    The design, launch and assessment of a new volunteer-based plant monitoring scheme for the United Kingdom

    Get PDF
    Volunteer-based plant monitoring in the UK has focused mainly on distribution mapping; there has been less emphasis on the collection of data on plant communities and habitats. Abundance data provide different insights into ecological pattern and allow for more powerful inference when considering environmental change. Abundance monitoring for other groups of organisms is well-established in the UK, e.g. for birds and butterflies, and conservation agencies have long desired comparable schemes for plants. We describe a new citizen science scheme for the UK (the ‘National Plant Monitoring Scheme’; NPMS), with the primary aim of monitoring the abundance of plants at small scales. Scheme development emphasised volunteer flexibility through scheme co-creation and feedback, whilst retaining a rigorous approach to design. Sampling frameworks, target habitats and species, field methods and power are all described. We also evaluate several outcomes of the scheme design process, including: (i) landscape-context bias in the first two years of the scheme; (ii) the ability of different sets of indicator species to capture the main ecological gradients of UK vegetation; and, (iii) species richness bias in returns relative to a professional survey. Survey rates have been promising (over 60% of squares released have been surveyed), although upland squares are under-represented. Ecological gradients present in an ordination of an independent, unbiased, national survey were well-represented by NPMS indicator species, although further filtering to an entry-level set of easily identifiable species degraded signal in an ordination axis representing succession and disturbance. Comparison with another professional survey indicated that different biases might be present at different levels of participation within the scheme. Understanding the strengths and limitations of the NPMS will guide development, increase trust in outputs, and direct efforts for maintaining volunteer interest, as well as providing a set of ideas for other countries to experiment with

    Synthesis and biological evaluation of benzodiazepines containing a pentafluorosulfanyl group

    Get PDF
    The widely used pentafluorosulfanyl group (SF5) was deployed as a bioisosteric replacement for a chloro-group in the benzodiazepine diazepam (Valium™). Reaction of 2-amino-5-pentafluorosulfanyl-benzophenone with chloroacetyl chloride followed by hexamethylenetetramine, in the presence of ammonia, led to 7-sulfurpentafluoro-5-phenyl-1H-benzo[1,4]diazepin-2(3H)-one (2c). The latter was able to undergo a Pd-catalysed ortho-arylation, demonstrating that these highly fluorinated benzodiazepines can be further modified to form more complicated scaffolds. The replacement of Cl by the SF5 group, led to a loss of potency for potentiating GABAA receptor activation, most likely because of a lost ligand interaction with His102 in the GABAA receptor α subunit. Dedicated to Professor Jonathan Williams, an inspirational and humble pioneer, a colleague and mentor in chemistry

    Landscape-scale drivers of pollinator communities may depend on land-use configuration

    Get PDF
    Research into pollinators in managed landscapes has recently combined approaches of pollination ecology and landscape ecology, because key stressors are likely to interact across wide areas. While laboratory and field experiments are valuable for furthering understanding, studies are required to investigate the interacting drivers of pollinator health and diversity across a broader range of landscapes and a wider array of taxa. Here, we use a network of 96 study landscapes in six topographically diverse regions of Britain, to test the combined importance of honeybee density, insecticide loadings, floral resource availability and habitat diversity to pollinator communities. We also explore the interactions between these drivers and the cover and proximity of semi-natural habitat. We found that among our four drivers, only honeybee density was positively related to wild pollinator abundance and diversity, and the positive association between abundance and floral resources depended on insecticide loadings and habitat diversity. By contrast, our exploratory models including habitat composition metrics revealed a complex suite of interactive effects. These results demonstrate that improving pollinator community composition and health is unlikely to be achieved with general resource enhancements only. Rather, local land-use context should be considered in fine-tuning pollinator management and conservation
    • …
    corecore