

Edinburgh Research Explorer

An Early Evaluation of Intel’s Optane DC Persistent Memory
Module and its Impact on High-Performance Scientific
Applications
Citation for published version:
Weiland, M, Brunst, H, Quintino, T, Johnson, N, Iffrig, O, Smart, S, Herold, C, Bonanni, A, Jackson, A &
Parsons, M 2019, An Early Evaluation of Intel’s Optane DC Persistent Memory Module and its Impact on
High-Performance Scientific Applications. in SC'19 Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis., 76, ACM, International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC 2019), Denver, United States, 19/11/19.
https://doi.org/10.1145/3295500.3356159

Digital Object Identifier (DOI):
10.1145/3295500.3356159

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SC'19 Proceedings of the International Conference for High Performance Computing, Networking, Storage, and
Analysis

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/266996906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3295500.3356159
https://doi.org/10.1145/3295500.3356159
https://www.research.ed.ac.uk/portal/en/publications/an-early-evaluation-of-intels-optane-dc-persistent-memory-module-and-its-impact-on-highperformance-scientific-applications(00807d1c-b95f-449a-8aaf-7e95d8fb6e45).html

An Early Evaluation of Intel’s Optane DC Persistent Memory
Module and its Impact on High-Performance Scientific

Applications
Michèle Weiland

EPCC, The University of Edinburgh
Edinburgh, United Kingdom
m.weiland@epcc.ed.ac.uk

Holger Brunst
TU Dresden

Dresden, Germany
holger.brunst@tu-dresden.de

Tiago Quintino
ECMWF

Reading, United Kingdom
tiago.quintino@ecmwf.int

Nick Johnson
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
n.johnson@epcc.ed.ac.uk

Olivier Iffrig
ECMWF

Reading, United Kingdom
olivier.iffrig@ecmwf.int

Simon Smart
ECMWF

Reading, United Kingdom
simon.smart@ecmwf.int

Christian Herold
TU Dresden

Dresden, Germany
christian.herold@tu-dresden.de

Antonino Bonanni
ECMWF

Reading, United Kingdom
antonino.bonanni@ecmwf.int

Adrian Jackson
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
a.jackson@epcc.ed.ac.uk

Mark Parsons
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
m.parsons@epcc.ed.ac.uk

ABSTRACT
Memory and I/O performance bottlenecks in supercomputing sim-
ulations are two key challenges that need to be addressed on the
road to Exascale. The recently released byte-addressable persistent
non-volatile memory technology from Intel, DCPMM, promises
to be an exciting opportunity to break with the status quo, with
unprecedented levels of capacity at near-DRAM speeds. In this
paper, we explore the potential of DCPMM in the context of high-
performance scientific computing using two distinct applications
in terms of outright performance, efficiency and usability for both
its Memory and App Direct modes. In Memory mode, we show
that it is possible to achieve equivalent performance and better
efficiency for a CASTEP simulation that struggles with memory
capacity limitations on conventional DRAM-only systems without
needing to introduce any changes to the application. For IFS, we
demonstrate that using a distributed object-store over the NVRAM
devices reduces the data contention created in weather forecasting
data producer-consumer workflows. In addition to presenting the
impact on two applications, we also present results for achievable
memory bandwidth performance using STREAM.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC19, November 2019, Denver, US
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
Multicore architectures; •Hardware→Memory and dense stor-
age.

KEYWORDS
non-volatile memory, IO performance

ACM Reference Format:
Michèle Weiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier
Iffrig, Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jackson,
and Mark Parsons. 2019. An Early Evaluation of Intel’s Optane DC Per-
sistent Memory Module and its Impact on High-Performance Scientific
Applications. In Proceedings of Supercomputing19 (SC19). ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Application performance on supercomputers today is often not
limited by the capabilities of the processing units, but rather by
the systems’ ability to feed those processing units with data. The
performance characteristics of memory and storage play a key role
in bringing the data to the compute, and attempts at filling the
latency gap in the hierarchy between main memory (DRAM) and
the network attached parallel filesystems include approaches such
as burst buffers or SSD storage on the compute nodes [28]. Memory
capacity and bandwidth, and I/O performance, can be performance
limiting factors on today’s systems and are often cited as key chal-
lenges to be addressed on the road to Exascale [36] [14] [15]. The
recently announced Aurora system, the first Exascale system in the
US, will include byte-addressable persistent memory in order to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC19, November 2019, Denver, US Weiland et al.

further bridge this latency gap [13]; it is scheduled to come online
in 2022. The technology that has been chosen for the Aurora system
is Intel’s Optane Data Center Persistent Memory Module (referred to
from hereon as DCPMM).

DCPMM was launched as a product on the 2nd April 2019 [7]
alongside Intel’s Cascade Lake CPUs (needed to support DCPMM)
and there is thus far scant information in the public domain on its
performance characteristics. The Non-Volatile Systems Laboratory
have published basic DCPMM performance measurements based
on a range of low-level benchmarks and (primarily) database appli-
cations [23]. The potential impact of the persistent memory layer
on the performance of traditional high-performance computing
applications (as opposed to data-centric enterprise workloads such
as in-memory databases) however is not explored and is an impor-
tant aspect in understanding its potential in the context of Exascale
computing.

This paper is the first evaluation of the impact and performance
implications of byte-addressable persistent memory, specifically
DCPMM, on HPC applications that are significantly memory or I/O
bound. More specifically, our contributions include:

• Exploring in detail the different usage scenarios for DCPMM,
in particular for applications that are limited by memory
capacity or I/O performance on current supercomputer ar-
chitectures;

• Demonstrating the impact of the increased memory capacity
of the compute nodes using DCPMM’s Memory mode (with-
out changing the application) in terms of runtime, energy
and power;

• Evaluating the performance impact of modifying an applica-
tion to use DCPMM’s App Direct mode to be able to directly
load/store from/to persistent memory;

• Quantifying the impact of NUMA effects using the libvm-
malloc library in App Direct mode; and

• Showing the performance of DCPMM using an established
profiling toolchain and the memory-bandwidth benchmark
STREAM.

2 DCPMM - BYTE-ADDRESSABLE
PERSISTENT MEMORY

Byte-addressable persistent memory is a form of memory that is
both non-volatile (i.e. data persists even after a power cycle) and that
tcan at the same time be addressed directly by the CPU through
load and store operations. Intel’s Optane Data Centre Persistent
Memory Module (DCPMM for short) offering is a particular type
of byte-addressable persistent memory, based on the 3D XPoint
technology.

DCPMM is delivered in DIMM form factor (DDR4 socket com-
patible) and thus the modules sit in the DIMM slots next to the
CPU, alongside standard DRAM modules. The CPU’s integrated
memory controller addresses both the volatile and the non-volatile
memory banks equally; note that DCPMM currently relies on Intel’s
Cascade Lake CPUs with large memory support (model suffix "M").
DCPMM can be operated in two main platform modes (Memory
mode and App Direct mode, details below), which can be changed
into by rebooting the compute nodes that host the memory. The

current generation of DCPMMmodules are available in three differ-
ent sizes (128GB, 256GB and 512GB), which gives a ∼5-10x increase
in capacity (per module) over DDR4 DRAM. Although DCPMM is
slower than DRAM, it delivers much higher memory capacity per
node than is possible with a DRAM-only solution. DCPMM cannot
replace DRAM entirely: each memory channel (there are 6 per CPU
with two DIMMs slots each) must be populated with at least one
DRAM DIMM.

2.1 DCPMMMemory mode
In Memory mode, also known as two-level memory mode, the
byte-addressable persistent memory is transparent to applications
and represents the main memory space, while DRAM effectively
becomes the last level cache. In this mode, the persistent properties
of the technology are not exploited because coherence between
DRAM and persistent memory cannot be guaranteed. Applications
do not have to be modified to use the persistent memory in this
mode. All data objects are placed into DCPMM by default.

2.2 DCPMM App Direct mode
In App Direct mode, also referred to as one-level memory mode,
the persistent memory is only accessible via direct load and store
operations and its primary use is as very fast byte-addressable non-
volatile local storage. In this mode, applications can only exploit
the persistent memory either if they manage it directly or if system
software provides an interface (e.g. through a file system that is
mounted on the persistent memory).

2.3 libvmmalloc
When a compute node is in App Direct mode, it is also possible
to use the persistent memory as if it were main DRAM memory
by using the libvmmalloc library, which is part of the Persistent
Memory Development Kit (PMDK) [11]. PMDK implements SNIA’s
Non-Volatile Memory (NVM) Programming Model standard [10].
By using libvmmalloc, typically by setting the LD_PRELOAD environ-
ment variable, all calls to dynamic memory allocations (e.g. malloc,
memalign or free) are intercepted and replaced with persistent mem-
ory allocations without the need to modify the application. Instead
of placing data structures on the system heap, they are placed into
a memory mapped file that resides in persistent memory. Unlike
in Memory mode, where all data objects are placed into the non-
volatile memory, using libvmmalloc means that statically allocated
objects will remain in DRAM.

2.4 Configuring and managing DCPMM
In order to be able to manage the DCPMMs, verify their status and
modes, Intel provide a utility called ipmctl [8]. The command line
interface tool can be used the check the health and performance of
the modules, provision their configuration, and even update their
firmware. For example, changing the mode from App Direct to
Memory can be achieved using two simple ipmctl commands (first
removing the existing setup and then creating a new one):

i pmc t l d e l e t e − f −dimm −pcd
i pmc t l c r e a t e − f −goa l MemoryMode=100

An Early Evaluation of Intel’s Optane DC Persistent Memory Module for HPC SC19, November 2019, Denver, US

An API (libipmctl) is also provided to enable DCPMMs to be
managed programmatically. The main limitation of the ipmctl tool
is that it requires root level privileges on a system, which makes
it impractical for most users. However checking the mode of the
DCPMMs can also be done simply by looking at meminfo:

c a t / proc / meminfo | grep MemTotal

If this command returns 3120802508 kB on a system that is con-
figured with 3TB of NVRAM per node, the DCPMMs on that node
are in Memory mode.

3 MEMORY & I/O BOTTLENECK USE CASES
In this paper, we evaluate the impact of using byte-addressable
persistent memory, specifically DCPMM, on two distinct use case
exemplars that represent realistic challenges for supercomputing
resources today:

• Firstly, a simulation that requires more memory than is avail-
able per core and that must therefore to be run on a large
number of nodes to satisfy memory requirements. For this
use case, we evaluate a large-memory simulation using the
CASTEP materials modelling code (see Section 3.1).

• Secondly, a simulation that performs a large amount of I/O,
to the point where this becomes a performance limiting
factor. Here we use an IFS weather forecasting simulation
(see Section 3.2).

The sections below introduce the applications in more detail and de-
scribe why their resource demands can be problematic. In addition
to the two applications, we also use the STREAM benchmark to es-
tablish the baseline memory-bandwidth performance for DCPMM.
It is briefly described in Section 3.3.

3.1 Large memory use case: CASTEP
CASTEP [17, 22, 27, 31] is a leading simulation code for calculating
the properties of materials from first principles. Using density func-
tional theory, it can simulate a wide range of material proprieties,
including energetics, structures at the atomic level, vibrational prop-
erties, and electronic response properties. CASTEP is written in
Fortran90, and parallelised with a hybrid MPI and OpenMP scheme.

The computational resource demands of CASTEP vary greatly
depending on the type of simulation that is undertaken. Two differ-
ent test cases are used for the experiments in this paper. The first is
a small, 32-atom Titanium Nitride (TiN) surface, designed to be run
on a small number of cores [4]. Because of its size and short runtime,
this test case is well suited to demonstrating the functionality of
the performance tools and showing the principles and impact of
different system configurations. The second test case is a poly-A
DNA simulation with 1356 atoms in a large simulation box [3]. This
test requires a large amount of memory per MPI process, and we
use it here as our main example of a simulation that exceeds the
memory capacity offered by many HPC systems: on our test system
with 34 compute nodes, each with 48 cores and 192GB of main
memory (i.e. 4GB of memory per core; for a detailed description
see Section 4.1), a fully populated run using 1632 MPI processes
fails with “out of memory” errors (see Table 1). CASTEP provides
its own internal estimator for per process memory requirements -

the estimates are not necessarily entirely accurate (they often over-
estimate the amount of memory that is actually required), however
they generally provide a good guideline. In order to fit the problem
onto the 34-node system, it is necessary to underpopulate the nodes
by reducing the number of MPI processes per node. A hybrid MPI-
OpenMP parallelisation scheme was implemented in CASTEP in
order to reduce the memory footprint of the application [21] while
still being able to use all the cores for at least part of the simulation.
Table 1 gives an overview of the memory per process and parallel
efficiency rating estimates as computed by CASTEP, together with
the runtime for 3 iterations of the self-consistent field (SCF) solver
for a range of configurations. As can be seen from the numbers,
the memory requirement per process decreases with increasing
numbers of nodes, but so does the estimated parallel efficiency of
the simulation, and the time to solution does not improve going
from 20 to 24 nodes because the simulation does not scale.

3.2 I/O intensive use case: IFS
The Integrated Forecast System (IFS) [29] is the main numerical
weather prediction application currently used by ECMWF, the Eu-
ropean for Medium RangeWeather Forecasts [6], for its daily opera-
tional weather forecasts. In four daily forecast cycles, global weather
observations and satellite data are assimilated to produce the ini-
tial conditions of the atmosphere and oceans, and from there new
global weather forecasts are computed up to 15 days ahead. Since
these models inherently contain multiple sources of uncertainty,
the deterministic high-resolution forecast (IFS HRES) is comple-
mented with a parallel run of 51 probabilistic ensemble (IFS ENS)
of forecasts (50 perturbed plus 1 control unperturbed). These mod-
els are part of a larger workflow that processes the forecasts and
disseminates them to the member-states and worldwide to users of
ECMWF data [5]. Importantly, this workflow is time-critical and
subject to a strict schedule of data delivery. Any improvement in
runtime allows delivery of weather forecasts precious minutes ear-
lier. This is paramount as the value of the data decays rapidly with
time (think of energy companies playing on the futures market).

The raw output of themodel are fields layered in two-dimensional
slices of the atmosphere, covering all of the globe. The HRES uses a
reduced Gaussian grid of average spacing of 9km with 137 vertical
levels and extends to 10 days, while the ENS average spacing is
18km with 91 vertical levels extending to 15 days. The time resolu-
tion is hourly for the first 90 forecast steps, then 3-hourly until 6
days, and 6-hourly there forth. For a detailed characterization of
this data set, refer to Table 2, where a further distinction between
the atmospheric and the wave model is presented.

All the model output fields are in a raw form, meaning they still
require post-processing to meet the requirements of the data users.
This is the responsibility the product generation application (PGEN)
which processes the fields written by the model into client-specific
products that are then disseminated (pushed) to client destinations
world-wide, to a total current amount of 30 TiB per day. In order to
meet a very strict delivery schedule, each product generation task is
started as soon as the straggler model finishes writing the data for
a given forecast step (a time slice) and sends its step complete event
to the workflow manager. Each product generation task is a small
scale parallel computation, typically using 4 to 8 HPC compute

SC19, November 2019, Denver, US Weiland et al.

Table 1: DNA test case baseline performance results, including CASTEP’s own estimates of memory requirements and parallel
efficiency, together with measured wallclock time for 3 SCF loop iterations, for different node and process counts.

Nodes MPI x OpenMP Active cores Memory estimate per process Runtime Overall parallel efficiency

34 48x1 1632 5,486.6 MB OOM N/A
24 36x1 864 6,425.0 MB 5,509.70s 20%
24 24x2 1152 7,439.2 MB 4,977.56s 18%
20 36x1 720 7,001.9 MB 5,353.51s 25%
20 24x2 960 8,280.0 MB 4,916.26s 21%
18 36x1 648 7,355.5 MB 6,551.68s 23%
18 24x2 864 8,843.5 MB 5,710.15s 31%

Table 2: Characterization of ECMWF forecast model output fields.

Model Avg. Resolution Field Pts Typical Field Size Nb Fields / cycle Total Size / cycle Total Size / day

HRES Atmos 9 km 6.6 M 3.2 MiB 272 K 950 GiB 3.8 TiB
HRES Wave 14 km 938 K 1.4 MiB 170 K 325 GiB 1.3 TiB
ENS Atmos 18 km 1.7 M 804 KiB 10 M 15025 GiB 60.1 TiB
ENS Wave 28 km 234 K 340 KiB 10.5M 3475 GiB 13.9 TiB

nodes, however 122 steps require processing for each forecast cycle,
making it a sizable part of the operational workflow.

To store the HRES and ENS model output and serve its numerous
fields to the PGEN, the data is currently written to a parallel file-
system. The data is stored in an internationally mandated format for
weather data interchange, named GRIB [38]. For fast access to each
individual field the data is indexed according to an indexing schema
to and made accessible as an object by its scientific meta-data. This
domain-specific object store for weather and climate data is called
the Fields Database (FDB), and has been operational at ECMWF for
multiple decades. Version 5 entered operations in 2018.

There are three main factors that compound to make the above
workflow challenging: (1) the sheer size of the data sets written by
the model HRES/ENS and read by the product generation PGEN as
described in Table 2; and (2) the concurrent nature of the workflow,
where all the forecast models (1 HRES + 51 ENS) run simultaneously
writing data streams per I/O task permodel, together with the PGEN
for each of the forecast steps which reads accross all of these output
streams, (3) the time-critical nature of the workflow, with a schedule
service level agreement measured with resolution of minutes

This data exchange between the data producers (forecast models)
and the data consumers (product generation) is currently one of the
pain points of the operational workflow. Ongoing studies for the
upgrade to the next model resolution have encountered significant
bottlenecks. One particular case for a resolution of HRES 5km and
ENS 10km, we have obtained a time to solution of 5765s without
model output, which increased 17% when model output was added
(not withstanding the usage of asynchronous I/O servers). The
striking fact is that this timing was further increased by 26% by
having the consumers simultaneously access the dataset in the
parallel filesystem. The data production (HRES and ENS runs) was
slower because the data consumers were active, even though they
are completely independent parallel runs. There is some evidence

this is caused by contention in the data movers, with read requests
for recent data throttling the write request for new data.

To compound this I/O challenge and frame this problem for the
Exascale era, we need to understand these figures are aggravated
with an average yearly compound growth of 40% to 45% of data
sizes. Putting this into context, in 1995 the operational weather
forecast produced 14 TiB yearly, whereas it currently produces
roughly 75 TiB daily. This growth rate is a direct function of the
computational power available, and the relentless increase in model
resolution, probabilistic ensembles and ever increasing complex
physical models. The ambition is to continue this rate of progression,
leading to Exascale numerical weather prediction [18].

To mitigate these I/O challenges, the FDB was redesigned to
support storing its fields and its indexing meta-data to different
storage back-ends. To continue supporting the current functional-
ity we implemented a POSIX file-system back-end. In addition, to
make use of the byte addressable non-volatile memory we imple-
mented a back-end using PMDK. However, because each NVDIMM
is only accessible from its compute node, the FDB was also further
extended with a remote distributed front-end, based on a linearly
scalable Rendezvous distributed hash table [35], which handles the
dispatching of requests over the fabric between the nodes holding
the storage and thus unifies them under a single FDB object store.
All this work is explained in full detail in [34] and [33]. In section
5.2 we will demonstrate how this new FDB software (version 5),
designed for the new DCPMM hardware (using App Direct), tackles
the I/O bottleneck between the weather forecast data producers
and data consumers by minimizing contention.

3.3 STREAM benchmark
The STREAM benchmark [30] is a synthetic application designed
to measure the achievable memory bandwidth of a given processor
or compute node. To evaluate memory bandwidth it measures the
time taken for each of four common mathematical operations (copy,

An Early Evaluation of Intel’s Optane DC Persistent Memory Module for HPC SC19, November 2019, Denver, US

Figure 1: Simplified view of workflow dependencies between IFS HRES and ENS data producing jobs (blue) and the PGEN data
consumer jobs (green). When a model output step is completed an event triggers the start up of PGEN (black arrows). The
event manager interaction isn’t shown. In the example, the PGEN jobs for ENS output are triggered from the straggler job,
which initially is ENS 2 but then becomes ENS 1. Note that final PGEN jobs may overrun the model, as shown by the bottom
PGEN ENS job. For simplicity we have omitted most steps and shown only 3 out of 51 ensembles.

scale, norm and triad) using up to three data arrays (a, b, c) and a
single scalar variable (α). Operations are performed as a loop over
elements in the arrays, with each array of equal size, preferably
four times as big as the last level of cache in the hardware the
benchmark is being run on.

For this paper we have used the standard STREAM benchmark
to evaluate DRAM and DCPMM Memory mode performance as
well as creating a new version of the STREAM benchmark that
directly targets App Direct mode (more details in Section 5.3). This
allows us to explore the achievable performance of DCPMM, and
the overheads the different modes or ways of exploiting thememory
may impose.

4 EXPERIMENTAL SETUP
In this section, we first give an overview of the system that was
used for testing and then describe the tools used to support the
analysis of DCPMM performance.

4.1 Prototype test system
The prototype test system consists of 34 1U dual-socket Intel Xeon
(Cascade Lake generation) compute nodes that are built around a
new motherboard designed specifically for the DCPMM memory
which uses Intel’s 3D XPoint technology. The compute nodes are
supported by two login nodes, a boot node, a service node and
two disk storage nodes. All nodes use the same motherboard and
processor type, but vary in the amount of memory and number
of processors; all the compute nodes have the same configuration.

Each processor is an Intel Xeon 8260M with 24 cores (with a max-
imum of 48 hardware threads) and a base frequency of 2.4GHz.
Hyperthreading is enabled on the system. Each compute node con-
sists of two processors and 192GB of DDR4 RAM (12x16GB DIMMs)
accompanied by 3,072GB of DCPMM memory (12x256GB DIMMs).
The total DCPMM capacity of the system is 102TB, in addition to
6.5TB of DDR4 DRAM. The Intel Omni-Path high-speed intercon-
nect, with 100Gbps port speed, was used to connect the compute
nodes in a redundantly connected fabric providing 200Gbps per di-
rection to other nodes. EachOmni-Path switch supports amaximum
switching capacity of 9.6Tbps. An Omni-Path to Infiniband Gate-
way node has also been developed but was not used in this work.
The disk storage nodes provide access to a 270TB Lustre filesystem.
The system software consists of Linux CentOS 7.5, SLURM for job
scheduling, Intel’s ipmctl tool to manage the DCPMM modules (see
Section 2.4), the ndctl [9] software to manage namespaces and the
Persistent Memory Development Kit (PMDK) set of libraries and
tools. The Intel 19 compiler suite, MPI and MKL libraries are also
available on the prototype and were used to build the applications
for this study.

4.2 Performance tools
For our performance evaluation we make use of the performance
tools Score-P [26] and Vampir [25]. These two tools support the
recording and processing of application-oriented performance met-
rics like computational intensity or communication overhead in the
context of software modules, functions, or loops. At the same time,

SC19, November 2019, Denver, US Weiland et al.

system performance metrics such as memory, energy, or schedul-
ing demands can be recorded accordingly to distinguish between
internal and external causes. The tools workflow is organized as
follows: Score-P is attached to an application and records selected
performance metrics; Vampir then translates the recorded data to
performance profiles and timelines for interactive graphical inspec-
tion and deduction.

The focus of this paper is primarily on studying memory and
I/O performance, as well as energy consumption, effects resulting
from the use of DCPMM. We configure the data pre-selection and
filtering capabilities of Score-P to record representative function
invocations in combination with energy (RAPL counters), I/O, mem-
ory allocation (rusage and malloc/free metrics), and memory access
counters (PAPI counters). Combining this data with low overhead
application sampling enables us to understand performance effects
as they happen. Overall, we achieve low application perturbation
with an overall measurement overhead less then two percent. We
achieve this low overhead by measuring at an average rate of 4 kHz
per thread. For example, for the CASTEP performance analysis (see
Section 3.1), timing data was collected for 307 dominant functions
out of 641.

4.3 Measuring energy and power consumption
using system tools

The SLURM resourcemanager provides the sacct [12] feature, which
keeps track of accounting data for all jobs inside a database. One
of the data points that is collected is “ConsumedEnergy” - SLURM
uses RAPL counters to get the energy consumed by the CPU and
the memory, broken down by the node that made up a job. A sec-
ond system-level method, which can also report the total power
consumption of an node rather than only CPU and memory, uses
the Intelligent Platform Management Interface (IPMI [1]) through
Fujitsu’s integrated Remote Management Controller (iRMC), taking
a power reading every minute.

5 PERFORMANCE EVALUATION
In the subsequent sections we present results for the two applica-
tions, and STREAM, comparing their performance on the system
with and without using DCPMM. In App Direct mode, DCPMM is
not used unless it is explicitly exploited, and as such running an ap-
plication without support for DCPMM means the system presents
itself like a standard DRAM-only platform. This allows for a clean
evaluation of the impact of DCPMM on the applications.

5.1 CASTEP
In the paragraphs below, we analyse the impact of expanding the
usable memory capacity available to CASTEP through DCPMM.
We are using the performance analysis tools on the small TiN test
case only. The small TiN case fully fits into DRAM or DCPMM
on a single identical node and it therefore allows us to study the
application’s pure memory performance without any performance
effects resulting from the system interconnect or the memory to
CPU mapping, which cannot be avoided for the DNA input data set.
Table 3 compares key performance characteristics, such as runtime,
Cycles per Instruction (CPI), stalls and loads from DCPMM.

5.1.1 TiN - DRAM only baseline. As the TiN test case is small
we limit our experiments to be within a single node. For the sin-
gle socket experiments we pin the MPI processes to the cores on
socket 0 using the I_MPI_PIN_PROCESSOR_LIST environment vari-
able. The baseline results we observe are 435.57s using socket 0
only, and 193.63s using the full node. Figure 2 shows profile infor-
mation over time of the run on socket 0 with DRAM only (white
background) to be used as reference. The most dominant function
is hamiltonian_diogonalise_ks() (highlighted in green), which con-
sumes 67% of the total run time and varies between four and six
seconds per call. As expected, there are no loads from DCPMM in
this setup. The memory high watermark for the TiN test case is
18.658GB, well within DRAM capacity, which is important for our
experiment in Memory mode below.

5.1.2 TiN - App Direct mode with libvmmalloc. The TiN test case
is small enough to easily fit into DRAM, however as mentioned
earlier we use this example to demonstrate the functionality and the
performance implications of using NVRAM in different configura-
tions. As described in Section 2.3, libvmmalloc allows applications
to use NVRAM without any implementation changes, and without
the need to reboot compute nodes into Memory mode. It simply
requires setting the size of the non-volatile memory pool (in bytes
and per MPI process) and the location of the pool using the envi-
ronment variables VMMALLOC_POOL_SIZE and VMMALLOC_POOL_DIR.
The path to the non-volatile memory pool must point to a directory
that is created in either /mnt/pmem_fsdax0, the DCPMMs located
next to socket 0, or /mnt/pmem_fsdax1, located next to socket 11.
Once the environment variables have been set, the libvmmalloc
library can be preloaded using LD_PRELOAD and the application can
be launched as normal. We test three different scenarios:

(1) Executing the application on socket 0, we place the data onto
the DCPMM next to socket 0;

(2) Keeping the application on socket 0, we now place the data
onto the “remote” DCPMM next to socket 1 to quantify the
effect of bad data locality;

(3) Using the full node and distributing the data to the local
DCPMM according to theMPI process ranks (i.e. ranks below
24 will use the DCPMM on socket 0, ranks over 24 use the
DCPMM on socket 1).

Tables 3 and 4 show the performance achieved when using libvm-
malloc and compare them with the baseline. For the single socket
example, it can be seen that the CPI and stall cycles increase in line
with the runtime. Please note that DRAM is not used for caching
in this mode of operation. When ensuring good data locality, the
performance difference between using DRAM only or using a com-
bination of DRAM and NVRAM is small, on the order of 10%. How-
ever, when deliberately forcing poor data locality by placing the
data away from the processing cores onto remote DCPMM, the
performance (as expected) drops. The impact of the non-uniform
memory access effect between sockets is around 30%, which is also
reflected in the reported stall cycles.

It is worth noting that the amount of data that is allocated dynam-
ically in this example is very small (1.011GB) - Fortran applications
often do most of their memory allocation statically, and therefore
1/mnt/pmem_fsdax0 and /mnt/pmem_fsdax1 are persistent memory namespaces that
support DAX operations with a block-device based file-system.

An Early Evaluation of Intel’s Optane DC Persistent Memory Module for HPC SC19, November 2019, Denver, US

using libvmmalloc means only a very small fraction of the data will
end up being allocated on the DCPMM.

5.1.3 TiN - Memory mode. In order to use CASTEP in Memory
mode, the compute nodes have to be rebooted - however no changes
need to be made to the application and it can be run as is, i.e. not
even a recompilation is required. In Memory mode, all the data is
placed in DCPMM by default and DRAM becomes the last level
cache. The memory controller ensures that the data is placed in the
DRAM cache if required. Comparing the performance of the TiN
test case in Memory mode vs App Direct mode with libvmmalloc on
a full node, Memory mode exhibits better performance despite only
a small amount of data being allocated to DCPMM in App Direct
mode. One of the reasons is most likely the lack of data caching
when using libvmmalloc: in Memory mode, DRAM is the cache, and
after the initial allocation on NVRAM the data will therefore pri-
marily be written to or read from DRAM; this caching functionality
however does not exist when using libvmmalloc and accesses to the
data in DCPMM come at a greater cost because of increasedmemory
latency. This is supported by the DCPMM load instruction values
in Table 3: the number is roughly halved for Memory mode, which
means that the remainder of the data accesses is from DRAM (i.e.
the cache). Having said that, it is surprising to detect that, running
in Memory mode, CASTEP keeps accessing NVRAM throughout
the entire application run at a small but relevant rate as depicted
in the red graph at the bottom of Figure 2. One might expect that
an application that fully fits into DRAM cache to asymptotically
perform like our reference run in DRAM (white background), how-
ever the two performance graphs (green and red) at the bottom of
Figure 2 tell us otherwise. We observe a performance degradation
of 8% in all calls to hamiltonian_diagonalise_ks(), which is in line
with the DCPMM loads observable in Memory mode throughout
the entire run with peaks at the beginning and towards the end of
the computation.

5.1.4 DNA - DRAM only. As DCPMM is not visible to the appli-
cation in App Direct mode, only 192GB of DRAM can be allocated
by default. The “Runtime” column in Table 1 shows the baseline
performance that can be observed from the application when us-
ing the DNA test case. We only measure the first 3 iterations of
the SCF loop as this gives us sufficient information to analyse the
application from a performance analysis point of view; a fully con-
vergent run requires more than 30 iterations. The best performance
is achieved on 20 nodes; it is possible to run on only 18 nodes,
however the runtime does increase significantly. For our further
analysis of the application running in this mode, we focus on the
20 node performance as the baseline.

5.1.5 DNA - Memory mode. We executed the DNA test case on 4
nodes in Memory mode. From a memory capacity point of view,
the test case would fit into the NVRAM of only 1 node (see Table 5),
however the runtime becomes prohibitively large for experiments
that use fewer than 4 nodes. We therefore decided to allocate more
nodes than strictly necessary and test a range of different process
and thread configurations per node: 36 MPI processes; 24 MPI
processes with 2 OpenMP threads per process; 48 MPI processes;
and finally 48 MPI processes with 2 OpenMP threads per process,

ensuring that the MPI processes are placed on the physical cores,
while the OpenMP threads are put on the logical cores.

Compared to the baseline performances, a DNA simulation run-
ning in Memory mode on 4 nodes using 24 MPI processes with 2
OpenMP threads is 3.75x slower than 20 nodes of its equivalent
configuration in App Direct mode, and 3x times slower when using
36 MPI per node, while in both cases using 5x fewer nodes. Using
all 48 cores per node results in the marginally better runtime. A
sensitivity analysis, where we reduced the number of MPI processes
used per socket by 1 at a time, showed that even better runtimes
can be achieved in Memory mode. We found the optimum to be 22
cores per socket, or 44 cores per node, which results in a runtime of
15,057.01s (6% faster than using 48 MPI processes per node), after
which point the trend reverses. This implies that CASTEP benefits
from the additional memory bandwidth it gains for a short while,
however this gain is fairly quickly negated by the reduction in pro-
cesses available for computation. Table 6 details the performance
results for the different configurations. As can be seen from these
results, for a very large test case Memory mode delivers better
performance per node than App Direct mode.

5.1.6 DNA - App Direct mode with libvmmalloc. Finally, we also
tested the DNA simulation using libvmmalloc. As the volume of
data that is dynamically allocated, and thus able to be intercepted
by libvmmalloc, is negligible compared to the total, the impact on
reducing the DRAM resource demands is insignificant. The usage
case is therefore such that no gains are expected, however we add it
here for completeness. The impact on the runtime is noticeable (in
particular so when using more MPI processes per node) because of
the lack of NVRAM data caching already described in Section 5.1.2
and 5.1.3.

5.1.7 Energy and power consumption. In terms of their utilisation
of compute resources (i.e. CPU-hours) being used, Memory mode is
more efficient than App Direct mode - a 5x difference in the number
of nodes used results in an approximately 3.5x difference in runtime.
According to the energy and power consumption of the simulation
as reported by SLURM’s sacct, Memory mode can draw more or less
power than App Direct mode, depending on the configuration (see
Table 6). In terms of energy usage however, Memory mode is more
efficient because of its relatively better performance, as outlined
earlier. In order to better understand the power usage of the nodes,
we measured the power consumption of the memory (both DRAM
and DCPMM) while running STREAM using 48 OpenMP threads,
this time using the perf [2] tool to measure power:

p e r f s t a t −a −e power / energy−ram / − I 1000

The total idle power draw for both the DRAM and DCPMM is
∼23W per node (see Table 7). Because DRAM and DCPMM share
memory controllers, the values returned by the perf tool (or indeed
sacct or RAPL) do not distinguish between the two. In order to
measure the difference (i.e. a node with 12 DRAM and 12 DCPMM
DIMMs versus a node with 12 DRAM DIMMs only) we physically
removed the DCPMM from a node and measured the idle power.
This measurement states that the 256GB DCPMM idle power is
∼12W per node, with DRAM accounting for the remaining ∼11W.

For DRAM, the difference between read and write power con-
sumption is very small, with write operations typically drawing

SC19, November 2019, Denver, US Weiland et al.

Figure 2: Timeline of DCPMM loads (red graph) during the execution of the most expensive routine (green graph) in the TiN
test case. The top timelines (white background) show the application running in AppDirectmode, with no loads fromDCPMM
registered. The bottom timelines (purple background) show the same application running in Memory mode, and here loads
from DCPMM have been registered throughout the entire run although CASTEP and its data fully fit into DRAM cache.

Table 3: TiN test case, single socket (24 MPI processes) - comparing App Direct (DRAM only) vs App Direct with libvmmalloc
(both socket local and socket remote DCPMM) vs Memory mode.

Mode Runtime (s) Slowdown CPI Stall cycles Load instructions from DCPMM

App Direct (DRAM only) 442.30 - 1.17 1.62E+13 0
App Direct + libvmmalloc local 468.89 1.06x 1.25 1.84E+13 6.87E+08
App Direct + libvmmalloc remote 599.70 1.36x 1.57 2.45E+13 5.66E+08
Memory mode 484.90 1.10x 1.25 1.87E+13 3.81E+08

Table 4: TiN test case, 1 node (48 MPI). App Direct (DRAM
only) vs App Direct with libvmmalloc vs Memory mode.

Mode Runtime (s) Slowdown

App Direct (DRAM only) 193.63 -
App Direct + libvmmalloc local 217.27 1.12x
Memory mode 204.79 1.06x

less power than reads. On DCPMM however the power consump-
tion of writes can be up to 20W peak, whereas reads are closer to
idle power. In Memory mode, DRAM acts as a write-back cache
and thus covers writes to the DCPMM; as writes to DRAM are less
power hungry than writes to DCPMM, and with reads being very
power efficient, this accounts for the difference in the overall power
draw.

Table 5: Measured memory high watermark ("MaxRSS") for
the DNA test case, as reported by SLURM’s sacct tool.

Number MPI procs Average mem Total mem
of nodes per node (GBs) (TBs)

1 48 (48 MPI per node) 1,735.40 1.69
2 96 (48 MPI per node) 882.16 1.72
4 192 (48 MPI per node) 452.10 1.77
20 720 (36 MPI per node) 103.21 2.01

5.1.8 CASTEP summary. For a simulation such as the DNA test
case with CASTEP, the large capacity of the DCPMM can be highly
beneficial if used in Memory mode. Although there are no perfor-
mance gains in real terms of time to solution, the benefits lie in the
much more efficient use of the resources that are available. It is pos-
sible to run the simulation on a smaller number of nodes while using

An Early Evaluation of Intel’s Optane DC Persistent Memory Module for HPC SC19, November 2019, Denver, US

Table 6: DNA test case - comparing the runtime, total energy consumption (CPUs and memory only) and power draw (CPU
and memory per node) for App Direct vs App Direct with libvmmalloc vs Memory mode.

Mode Nodes MPI x OpenMP Hyperthreading Runtime Energy. Power
(per node) (Y/N) (seconds) (MJoules, total) (Watts, per node)

App Direct (DRAM only) 20 36x1 N 5,353.51 47.39 442
App Direct (DRAM only) 20 24x2 N 4,916.26 41.48 422

App Direct with libvmmalloc 20 36x1 N 5,953.80 51.52 433
App Direct with libvmmalloc 20 24x2 N 5,185.84 43.76 421

Memory mode 4 36x1 N 16,132.42 28.64 444
Memory mode 4 24x2 N 18,461.64 30.28 410
Memory mode 4 48x1 N 15,958.82 29.93 469
Memory mode 4 48x2 Y 26,130.83 43.11 412

Table 7: Memory power consumption per node - (1) DRAM
only (no DCPMM), (2) DRAM plus DCPMM, (3) App Direct
mode (DCPMM at idle), and (4) Memory mode. The size of
the STREAM problem is given both as the total memory re-
quired and the array sizes.

STREAM total memory Memory power
(Array size) per node

Idle - DRAM only 11W
Idle - with DCPMM 23W
App Direct mode 4.5GiB (200 million) 40W
Memory mode 1,117.6 GiB (50 billion) 24W

more cores per node, rather than wasting processing capabilities to
satisfy memory capacity requirements. A secondary effect of using
DCPMM in Memory mode is a smaller overall energy footprint
per iteration, not because of reduced power consumption per node
(depending on the configuration this can be higher), but because
fewer nodes are involved in the simulation and the application
displays greater parallel efficiency. For three of the four Memory
mode configurations, the total energy consumption reported for
the DNA simulation in Table 6 is much reduced compared to the
best App Direct configuration. It is worth noting that this measure-
ment only takes into account CPUs and memory and not any other
energy consumers such as the network, which can be seen to be
a fixed cost per node. From a system throughput point of view, it
also means fewer idle resources and more densely utilised compute
nodes. Using libvmmalloc does not prove beneficial in this particu-
lar case, for two reasons: firstly, CASTEP does not use malloc-style
dynamic memory allocation sufficiently to reduce the demands on
DRAM to be able to reduce the number of nodes that are needed
for the simulation; and secondly, the lack of DRAM-caching, which
in Memory mode is dealt with by the memory controller, means
that repeated data accesses to DCPMM limit overall performance.

5.2 IFS
To assess the effectiveness of this new architecture in tackling the
challenges for the IFS case, we have taken to analyze the architec-
ture’s effect on the FDB object-store that holds the model output

data fromwhich data consumers (PGEN) generate the forecast prod-
ucts. In Section 5.2.1 we analyze the raw performance of the object
store whereas in Section 5.2.2 we analyze the effect on a simplified
workflow using App Direct mode. Note that due to the very recent
access to the system, we have not been able to trouble shoot and
optimize the FDB backend based on PMDK, for which reason we
have refrained from analyzing its impact in this paper. The back-
end discussed here relies therefore on a local (fsdax) file-system
mounted on the DCPMM devices.

5.2.1 FDB object-store performance. We ran a series of tests as
summarized in Table 8, where we varied the number of object-store
servers and the number of writing tasks.We have also varied the per-
formance tests according to 2 characteristic field sizes (800KiB and
3.2MiB), to assess if the size of the objects matters in the object-store
performance. This test case mimics the behaviour of a very large
operational forecast with multiple ensembles, with burst behaviour
following the time stepping procedure, including the instructions
to flush data to persistent storage (which effectively act as barriers
thus blocking progress). As a result the test is highly dependent
on the application stack (and its bottlenecks) and the number of
client tasks writing. We believe that driving this benchmark with
application code is more realistic than simpler tests. and that the
performance measured is much closer to what an operational appli-
cation would expect to see from this architecture. The performance
measure is an aggregate of taking all the data pushed into storage
divided by the overall wall-clock time.

Table 8 shows two sets of results with the distributed object store
being driven with varying sized workloads, with different numbers
of client and server processes. The object store is configured to dis-
tribute the data across the server nodes according to a Rendezvous
hash. In one case the data is stored to the DCPMM devices along
with all the relevant indexing information. In the second case the
bulk data itself is discarded at the final write operation, and only
the indexing information is written. The routing of the data across
the network and through the software infrastructure is identical in
both cases. This allows us to attribute performance to either I/O,
and network and/or software.

We see that the performance obtained is strongly correlated with
both the number of servers and also the number of clients driving

SC19, November 2019, Denver, US Weiland et al.

the test by writing data. This suggests that there are significant bot-
tlenecks in the application layer, restricting the ability of individual
processes to push sufficient data to the servers.

The application issues flush requests to persist and consolidate
the data indexes at regular intervals, coinciding with the completion
of a forecast step. There is also the possibility that the network stack
is playing a role, because the protocol is currently relying on IP over
Omni-Path. Despite this, the FDB object store achieves a maximum
of 40.17GiB/s of application level traffic over 32 server nodes.

When writing the data to the DCPMM devices is disabled (only
indexes are updated), a small but consistent improvement in per-
formance is observed, likely due to to the elimination of the (small)
time taken to ensure that the data is persisted after each time step.
Overall the performance of the two cases track each other. This
demonstrates that the aggregated performance of this distributed
object store on this platform is currently limited by the network con-
nectivity and application software stack rather than the DCPMM
devices. This is in significant contrast to all cases run using filesys-
tems over HDD devices.

5.2.2 IFS workflow performance. Given the size of the prototype
(34 nodes), for this numerical weather forecast test case we had
to significantly reduce the size of the forecast workflow, which
usually requires many thousands of nodes to compute in an hour’s
schedule. We have thus chosen to run 6 model ensembles (ENS) for
half a day of forecast (12 forecast hours) and the accompanying
PGEN post-processing for each of those steps. We configured this
to use either the FDB storage backend on Lustre or distributed over
32 nodes, each using a single DCPMM mount point because our
capacity requirements we did not require more. The Lustre file
system uses 6 OSTs and we striped large data files over all 6. We
then compared run times between simply running the models, with
all model output enabled but no data consumers active (no PGEN),
to runs where the 12 PGEN consumers gradually execute as the
data becomes available.

From the results presented in Table 9 we observe that running
over Lustre the difference between running with and without data
consumers is a small slowdown from 1793s to 1928s (9%). This is
somewhat smaller than the 11% as observed at scale (see Section 3.2).
We believe that the system is not large enough to generate weather
forecast data of sizes and intensity that would trigger magnitude of
contention observed in operational systems.

Using a distributed FDB over NVRAM allows us to run the IFS
jobs about 10% faster (17% with data consumers) than using the
Lustre backend and notably to run the PGEN jobs concurrently to
the model without noticeable impact on its performance (in fact the
timing with PGEN was shorter, but under the run-time variability).
It is important to underline that this eliminates the majority of the
overall impact of I/O on the runtime of the workload. It is also worth
noting that in this case the distributed FDB servers are located
on the same nodes as the IFS computation and PGEN tasks are
running, and that the additional overhead and jitter introduced by
this collocation does not add a noticeable overhead to the runtime.

5.3 STREAM: Memory Bandwidth
Our App Direct mode benchmark uses largely the same code as
the standard STREAM benchmark, but replaces the initial memory

allocation with a call to pmem_file_map and some memory offset
calculations. After these modifications the only requirement is to
add the necessary “data persist” instructions to the benchmark
to ensure data is fully stored on the DCPMM hardware before
benchmarking ends.

We benchmarked a range of process and thread configurations
and chose the one that gave the best performance, namely 48 MPI
processes per node, each with 1 OpenMP thread. STREAM collects
the bandwidth achieved by each process on a node to calculate
the total node bandwidth. We collect the minimum, maximum, and
median bandwidth achieved for each operation to enable evaluation
of the variation of achieved bandwidth across a number of runs.
We used an array size of 19MB, requiring 2.7GB of memory across
all processes. The benchmark was set to repeat 10 times (with the
timings collected for the first iteration not used to calculate the
achieved bandwidth) and we ran each instance 5 times. The results
for the Triad operation are presented in Table 10.

The theoretical peak memory bandwidth of the nodes is around
210GB/s (given the processors and memory used in the system).
We can see from Table 10 that we are achieving a good fraction of
the peak bandwidth even for the more involved Triad operation.
There is less than 10% performance variation between the minimum
and maximum achieved bandwidths for those benchmarks and
configurations. The App Direct memory bandwidth is much lower
than the DRAM bandwidth, but well within the advertised 3-10x
performance difference between DRAM and DCPMM.

For this benchmark size, the Memory mode performance is very
close to the DRAM performance and equally consistent. However
this is a very small test case for Memory Mode and it violates the
STREAM benchmark guideline that the array size should be at least
4x the size of the sum of all the last-level caches used in the run.
Given that DRAM is used as the last-level cache for Memory mode,
STREAM also needs to be tested with much larger array sizes for
this configuration in order to get a complete performance picture.
We re-ran the benchmark in Memory mode with an array size of
4GB per process (giving a total memory size for the benchmark of
768GB). For this configuration, STREAM achieved 12GB/s for the
Triad operation with the same level of variation between minimum
and maximum performance as seen before. This is a significant
difference to the 146GB/s achieved in Memory mode for the smaller
size, or even when accessing DCPMM directly (32GB/s), however
it is to be expected: for sufficiently large problems, STREAM is
designed to bypass the cache (which Memory mode relies on for
performance) entirely. For this problem each memory access will
result in a DRAMmiss, which does not happenwhen using DCPMM
directly, making this a pathologically bad case for Memory mode.

6 RELATEDWORK
Although Intel Optane DCPMM was only launched as a product
very recently, research into how to overcome memory limitations
and how to accelerate I/O performance has been a topic of interest
for several years. Almost a decade ago, Caulfield et al [16] discussed
the potential impact of non-volatile memory technologies on both
memory-centric and I/O intensive HPC applications, looking at
NVRAM as an alternative to using large amounts of DRAM and or
SSDs. Rudoff [32] also discusses the expected benefits of persistent

An Early Evaluation of Intel’s Optane DC Persistent Memory Module for HPC SC19, November 2019, Denver, US

Table 8: Distributed FDB object store write performance, varying with the number of active servers. Each server is configured
to either use both DCPMMmount points, or to discard all bulk data.

DCPMM Null (data discarded)

Number of Client Field Sizes Total Total Client Performance Total Client Performance
Servers Tasks [KiB] Fields Time [s] [GB/s] Time [s] [GB/s]

4 32 803 768 k 2923 6.44 2264 8.31
4 64 803 1536 k 7405 10.17 6774 11.11

8 32 803 768 k 2111 8.92 1864 10.10
8 64 803 1536 k 5960 12.63 3893 19.34
8 128 803 3072 k 16800 17.93 11500 26.19

16 32 803 768 k 2100 8.96 2041 9.22
16 64 803 1536 k 4697 16.03 3799 19.82
16 128 803 3072 k 12998 23.17 8970 33.57

24 32 803 768 k 2562 7.35 2437 7.72
24 64 803 1536 k 4979 15.12 4858 15.50
24 128 803 3072 k 11562 26.05 9961 30.23
24 192 803 4608 k 20420 33.18 15611 43.40

32 128 803 3072 k 10919 27.58 4278 46.81
32 256 803 6144 k 29982 40.18 15589 51.39

4 16 3205 64 k 452 6.92 257 12.20
4 32 3205 128 k 1129 11.09 731 17.12
4 64 3205 256 k 4029 12.43 2341 21.39

8 16 3205 64 k 344 9.08 265 11.79
8 32 3205 128 k 1030 12.15 608 20.59
8 64 3205 256 k 2811 17.81 1855 27.00
8 96 3205 384 k 5059 22.27 2142 52.59

16 64 3205 256 k 2239 22.36 2861 17.50
16 96 3205 384 k 5289 21.30 2424 46.47

32 64 3205 256 k 2048 24.45 1735 28.86
32 128 3205 512 k 5276 37.96 4037 49.61

Table 9: Time to solution of the ENS model runs under the
IFS workflow. Measurements with and without concurrent
PGEN tasks and with two alternative storage backends Lus-
tre andNVRAM. PGENpost processing of forecasts products
for the 12 stephours generated. EachENS run scheduled into
5 nodes and PGEN scheduled to 1 node each.

Workflow FDB Number Data set Runtime
backend Fields [GiB] [s]

6 ENS Lustre 257202 286.6 1793
6 ENS + 12 PGEN Lustre 257202 286.6 1928

6 ENS NVRAM 257202 286.6 1610
6 ENS + 12 PGEN NVRAM 257202 286.6 1599

memory for HPC use cases, but also describes the challenges that
must be overcome, in terms of system software support, in order to
make the technology useful for as broad a range of applications as
possible. In [24], Kim and Bahn propose an architecture designed to

Table 10: STREAM Triad operation, using an array size of
19MB and 48 MPI processes each with 1 OpenMP thread.

Mode Min BW Med BW Max BW
(GB/s) (GB/s) (GB/s)

App Direct (DRAM only) 142 150 155
App Direct (DCPMM only) 32 32 32

Memory mode 144 146 147

accelerate I/O by use of non-volatile memory as back-end storage
partition rather than a cache device. Fernando et al [20] present
an object store called Phoenix, specifically for persistent objects,
designed to overcome the bandwidth differences between DRAM
main memory and NVRAM - this is particularly relevant in a setting
where (unlike with DCPMM) the memory spaces have to be man-
aged separately. In [37], the authors describe the potential benefit
(in terms of time to solution and efficient use of compute resources)
of using byte-addressable storage class memory in particular with a

SC19, November 2019, Denver, US Weiland et al.

view to HPC workflows, i.e. in scenarios where applications are run
in a producer-consumer setting. The authors in [19] also address
the topic of HPC workflows and introduce NVStream, a user-level
data management system for producer-consumer applications that
exploits the byte-addressable and persistent nature of NVRAM to
enable streamed I/O for scientific workflows.

7 CONCLUSIONS
DCPMM is a new memory technology that, as a concept at the very
least, has the potential to be highly disruptive to the status quo of
the HPC landscape. The opportunities that are offered by the combi-
nation of capacity, byte-addressability, latency and persistence are
vast and need to be explored very carefully. In its most easy to use
form, Memory mode, DCPMM does not make use of the persistent
nature of the 3D XPoint technology, but simply expands the avail-
able memory capacity of a system. This setup can deliver excellent
performance for sufficiently large workloads, while not necessitat-
ing any changes to the application. As shown earlier, NUMA effects
however do have the potential to impact performance considerably,
and data locality must therefore be dealt with carefully through
process pinning and local placement of data objects. Using DRAM
effectively for caching is also a key requirement for achieving good
performance in Memory mode. Unlike Memory mode, App Direct
mode requires intervention, either by the system software (such
as libvmmalloc) or by the application developers, to enable direct
access to DCPMM (as described for IFS in the paper). To be able to
benefit from libvmmalloc, three requirements should be met: the
application must be limited by the DRAM capacity offered in App
Direct mode; it should use a large proportion of dynamic memory
allocations that can be intercepted by the library; and it must not
be sensitive to the increased latency that DCPMM shows without
the benefit of DRAM caching. In order to extract the most perfor-
mance from DCPMM, applications should be modified to use the
memory directly through load and store operations in App Direct
mode. This scenario is the most invasive and complex to realise in
terms of the changes that are required, however as demonstrated
in this paper, this level of investment can pay off with considerable
performance gains, such as effectively negating the impact of I/O
on an application’s overall performance.

ACKNOWLEDGMENTS
This work has been funded by the European Union’s Horizon 2020
Research and Innovation programme under Grant Agreement no.
671951.

REFERENCES
[1] 2013. Intelligent Platform Management Interface Specification v2.0 rev. 1.1. Re-

trieved April 9, 2019 from https://www.intel.co.uk/content/dam/www/public/us/
en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf

[2] 2015. perf: Linux profiling with performance counters. Retrieved May 22, 2019
from http://perf.wiki.kernel.org

[3] 2017. CASTEP DNA benchmark. Retrieved March 25, 2019 from http://www.
castep.org/CASTEP/DNA

[4] 2017. CASTEP TiN benchmark. Retrieved April 5, 2019 from http://www.castep.
org/CASTEP/TiN

[5] 2019. ECMWF Datasets. Retrieved April 10, 2019 from https://www.ecmwf.int/
en/forecasts/datasets

[6] 2019. ECMWF website. Retrieved April 10, 2019 from https://www.ecmwf.int

[7] 2019. Intel Announces Broadest Product Portfolio for Moving, Storing and
Processing Data. Retrieved April 8, 2019 from http://newsroom.intel.com/
news-releases/intel-data-centric-launch

[8] 2019. IPMCTL. Retrieved April 4, 2019 from https://github.com/intel/ipmctl
[9] 2019. NDCTL - Utility library for managing the libnvdimm (non-volatile memory

device) sub-system in the Linux kernel. Retrieved May 24, 2019 from https:
//github.com/pmem/ndctl

[10] 2019. NVM Programming Model (NPM), Version 1.2. Retrieved
April 4, 2019 from https://www.snia.org/sites/default/files/technical_work/final/
NVMProgrammingModel_v1.2.pdf

[11] 2019. Persistent Memory Development Kit. Retrieved April 3, 2019 from
http://pmem.io/pmdk/

[12] 2019. SLURM accounting. Retrieved April 5, 2019 from https://slurm.schedmd.
com/sacct.html

[13] 2019. U.S. Department of Energy and Intel to deliver first exascale su-
percomputer. Retrieved April 8, 2019 from http://www.anl.gov/article/
us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer

[14] Sadaf R. Alam, Hussein N. El-Harake, Kristopher Howard, Neil Stringfellow, and
Fabio Verzelloni. 2011. Parallel I/O and the Metadata Wall. In Proceedings of the
Sixth Workshop on Parallel Data Storage (PDSW ’11). ACM, New York, NY, USA,
13–18. https://doi.org/10.1145/2159352.2159356

[15] Julian Borrill, Leonid Oliker, John Shalf, and Hongzhang Shan. 2007. Inves-
tigation of Leading HPC I/O Performance Using a Scientific-application De-
rived Benchmark. In Proceedings of the 2007 ACM/IEEE Conference on Super-
computing (SC ’07). ACM, New York, NY, USA, Article 10, 12 pages. https:
//doi.org/10.1145/1362622.1362636

[16] Adrian M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua
He, Arun Jagatheesan, Rajesh K. Gupta, Allan Snavely, and Steven Swanson.
2010. Understanding the Impact of Emerging Non-Volatile Memories on High-
Performance, IO-Intensive Computing. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’10). IEEE Computer Society, Washington, DC, USA, 1–11.
https://doi.org/10.1109/SC.2010.56

[17] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and
M.C. Payne. 2005. First principles methods using CASTEP. Z. Kristall. 220 (2005),
567–570.

[18] ECMWF. 2015. ECMWF Strategy 2016-2015, The strength of a common goal.
http://www.ecmwf.int/sites/default/files/ECMWF_Strategy_2016-2025.pdf.

[19] Pradeep Fernando, Ada Gavrilovska, Sudarsun Kannan, and Greg Eisenhauer.
2018. NVStream: Accelerating HPC Workflows with NVRAM-based Transport
for Streaming Objects. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’18). ACM, New
York, NY, USA, 231–242. https://doi.org/10.1145/3208040.3208061

[20] P. Fernando, S. Kannan, A. Gavrilovska, and K. Schwan. 2016. Phoenix: Memory
Speed HPC I/O with NVM. In 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC). 121–131. https://doi.org/10.1109/HiPC.2016.023

[21] Edward Higgins, Matt Probert, Phil Hasnip, Keith Refson, and Ian Bush. 2015. Hy-
brid OpenMP and MPI within the CASTEP code. ARCHER eCSE Technical Report
(2015). http://www.archer.ac.uk/community/eCSE/eCSE01-017/eCSE01-017_
Final_Report_technical.pdf

[22] P. Hohenberg and W. Kohn. 1964. Inhomogeneous electron gas. Phys. Rev. 136
(1964), B864–B871.

[23] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the
Intel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
arXiv:1903.05714 http://arxiv.org/abs/1903.05714

[24] J. Kim and H. Bahn. 2018. Accelerating Storage Performance with NVRAM
by Considering Application’s I/O Characteristics. In 2018 IEEE International
Conference on Big Data and Smart Computing (BigComp). 383–389. https://doi.
org/10.1109/BigComp.2018.00063

[25] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel. 2008. The Vampir
Performance Analysis Tool-Set. In Tools for High Performance Computing, Michael
Resch, Rainer Keller, Valentin Himmler, Bettina Krammer, and Alexander Schulz
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 139–155.

[26] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel, and
Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–91.

[27] W. Kohn and L. J. Sham. 1965. Self-consistent equations including exchange and
correlation effects. Phys. Rev. 140 (1965), A1133–A1138.

[28] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C.
Maltzahn. 2012. On the role of burst buffers in leadership-class storage systems.

https://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
https://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
http://perf.wiki.kernel.org
http://www.castep.org/CASTEP/DNA
http://www.castep.org/CASTEP/DNA
http://www.castep.org/CASTEP/TiN
http://www.castep.org/CASTEP/TiN
https://www.ecmwf.int/en/forecasts/datasets
https://www.ecmwf.int/en/forecasts/datasets
https://www.ecmwf.int
http://newsroom.intel.com/news-releases/intel-data-centric-launch
http://newsroom.intel.com/news-releases/intel-data-centric-launch
https://github.com/intel/ipmctl
https://github.com/pmem/ndctl
https://github.com/pmem/ndctl
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
http://pmem.io/pmdk/
https://slurm.schedmd.com/sacct.html
https://slurm.schedmd.com/sacct.html
http://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
http://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://doi.org/10.1145/2159352.2159356
https://doi.org/10.1145/1362622.1362636
https://doi.org/10.1145/1362622.1362636
https://doi.org/10.1109/SC.2010.56
http://www.ecmwf.int/sites/default/files/ECMWF_Strategy_2016-2025.pdf
https://doi.org/10.1145/3208040.3208061
https://doi.org/10.1109/HiPC.2016.023
http://www.archer.ac.uk/community/eCSE/eCSE01-017/eCSE01-017_Final_Report_technical.pdf
http://www.archer.ac.uk/community/eCSE/eCSE01-017/eCSE01-017_Final_Report_technical.pdf
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1109/BigComp.2018.00063
https://doi.org/10.1109/BigComp.2018.00063

An Early Evaluation of Intel’s Optane DC Persistent Memory Module for HPC SC19, November 2019, Denver, US

In 012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST).
1–11. https://doi.org/10.1109/MSST.2012.6232369

[29] S. Malardel, N. Wedi, W. Deconinck, M. Diamantakis, C. Kuehnlein, G. Mozdzyn-
ski, M. Hamrud, and P. Smolarkiewicz. [n. d.]. A new grid for the IFS. ECMWF
Newsletter 146 ([n. d.]), 23–28.

[30] J. D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE Technical Committee on Computer Architecture
(TCCA) Newsletter (Dec 1995).

[31] M. C. Payne, M. P. Teter, D. C. Allan, T.A. Arias, and J. D. Joannopoulos. 1992. Iter-
ative minimization techniques for ab initio total-energy calculations - molecular-
dynamics and conjugate gradients. Rev. Mod. Phys. 64 (1992), 1045–1097.

[32] Andy Rudoff. 2017. Persistent Memory: The Value to HPC and the Challenges. In
Proceedings of theWorkshop onMemory Centric Programming for HPC (MCHPC’17).
ACM, New York, NY, USA, 7–10. https://doi.org/10.1145/3145617.3158213

[33] SimonD. Smart, Tiago Quintino, and Baudouin Raoult. 2017. AHigh-Performance
Distributed Object-Store for Exascale Numerical Weather Prediction and Climate.
In Submitted to Proceedings of the Platform for Advanced Scientific Computing
Conference (PASC ’19). ACM, New York, NY, USA.

[34] Simon D. Smart, Tiago Quintino, and Baudouin Raoult. 2017. A Scalable Object
Store for Meteorological and Climate Data. In Proceedings of the Platform for
Advanced Scientific Computing Conference (PASC ’17). ACM, New York, NY, USA,
Article 13, 8 pages. https://doi.org/10.1145/3093172.3093238

[35] David Thaler and Chinya Ravishankar. 1996. A Name-Based Mapping Scheme
for Rendezvous. http://www.eecs.umich.edu/techreports/cse/96/CSE-TR-316-96.
pdf.

[36] Ananta Tiwari, Anthony Gamst, Michael A. Laurenzano, Martin Schulz, and
Laura Carrington. 2014. Modeling the Impact of Reduced Memory Bandwidth
on HPC Applications. In Euro-Par 2014 Parallel Processing, Fernando Silva, Inês
Dutra, and Vítor Santos Costa (Eds.). Springer International Publishing, Cham,
63–74.

[37] Michele Weiland, Adrian Jackson, Nick Johnson, and Mark Parsons. 2018. Ex-
ploiting the Performance Benefits of Storage Class Memory for HPC and
HPDA Workflows. Supercomputing Frontiers and Innovations 5, 1 (2018). http:
//superfri.org/superfri/article/view/164

[38] World Meteorological Organization. 2015. GRIB Format. http:
//www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/Publications/
2015editionUP2018/WMO306_vI2_en_ONLINE.pdf.

https://doi.org/10.1109/MSST.2012.6232369
https://doi.org/10.1145/3145617.3158213
https://doi.org/10.1145/3093172.3093238
http://www.eecs.umich.edu/techreports/cse/96/CSE-TR-316-96.pdf
http://www.eecs.umich.edu/techreports/cse/96/CSE-TR-316-96.pdf
http://superfri.org/superfri/article/view/164
http://superfri.org/superfri/article/view/164
http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/Publications/2015editionUP2018/WMO306_vI2_en_ONLINE.pdf
http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/Publications/2015editionUP2018/WMO306_vI2_en_ONLINE.pdf
http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/Publications/2015editionUP2018/WMO306_vI2_en_ONLINE.pdf

	Abstract
	1 Introduction
	2 DCPMM - Byte-addressable persistent memory
	2.1 DCPMM Memory mode
	2.2 DCPMM App Direct mode
	2.3 libvmmalloc
	2.4 Configuring and managing DCPMM

	3 Memory & I/O bottleneck use cases
	3.1 Large memory use case: CASTEP
	3.2 I/O intensive use case: IFS
	3.3 STREAM benchmark

	4 Experimental setup
	4.1 Prototype test system
	4.2 Performance tools
	4.3 Measuring energy and power consumption using system tools

	5 Performance evaluation
	5.1 CASTEP
	5.2 IFS
	5.3 STREAM: Memory Bandwidth

	6 Related work
	7 Conclusions
	Acknowledgments
	References

