10 research outputs found

    European HYdropedological Data Inventory (EU-HYDI)

    Get PDF
    There is a common need for reliable hydropedological information in Europe. In the last decades research institutes, universities and government agencies have developed local, regional and national datasets containing soil physical, chemical, hydrological and taxonomic information often combined with land use and landform data. A hydrological database for western European soils was also created in the mid-1990s. However, a comprehensive European hydropedological database, with possible additional information on chemical parameters and land use is still missing. A comprehensive joint European hydropedological inventory can serve multiple purposes, including scientific research, modelling and application of models on different geographical scales. The objective of the joint effort of the participants is to establish the European Hydropedological Data Inventory (EU-HYDI). This database holds data from European soils focusing on soil physical, chemical and hydrological properties. It also contains information on geographical location, soil classification and land use/cover at the time of sampling. It was assembled with the aim of encompassing the soil variability in Europe. It contains data from 18 countries with contributions from 29 institutions. This report presents an overview of the database, details the individual contributed datasets and explains the quality assurance and harmonization process that lead to the final database

    Examining wheat yield sensitivity to temperature and precipitation changes for a large ensemble of crop models using impact response surfaces

    Get PDF
    Impact response surfaces (IRSs) depict the response of an impact variable to changes in two explanatory variables as a plotted surface. Here, IRSs of spring and winter wheat yields were constructed from a 25-member ensemble of process-based crop simulation models. Twenty-one models were calibrated by different groups using a common set of calibration data, with calibrations applied independently to the same models in three cases. The sensitivity of modelled yield to changes in temperature and precipitation was tested by systematically modifying values of 1981-2010 baseline weather data to span the range of 19 changes projected for the late 21st century at three locations in Europe

    An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method

    No full text
    In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models

    European Hydropedological Inventory (EU-HYDI)

    No full text
    The European HYdropedological Data Inventory (EU-HYDI) collects data from European soils focusing on soil physical, chemical and hydrological properties. ItThere is a common need for reliable hydropedological information in Europe. In the last decades research institutes, universities and government agencies have developed local, regional and national datasets containing soil physical, chemical, hydrological and taxonomic information often combined with land use and landform data. A hydrological database for western European soils was also created in the mid-1990s. However, a comprehensive European hydropedological database, with possible additional information on chemical parameters and land use is still missing. A comprehensive joint European hydropedological inventory can serve multiple purposes, including scientific research, modelling and application of models on different geographical scales. The objective of the joint effort of the participants is to establish the European Hydropedological Data Inventory (EU-HYDI). This database holds data from European soils focusing on soil physical, chemical and hydrological properties. It also contains information on geographical location, soil classification and land use/cover at the time of sampling. It was assembled with the aim of encompassing the soil variability in Europe. It contains data from 18 countries with contributions from 29 institutions. This report presents an overview of the database, details the individual contributed datasets and explains the quality assurance and harmonization process that lead to the final database. It also contains information on geographical location, soil classification and land use/cover at the time of sampling. It was assembled with the aim of encompassing the soil variability in Europe. It contains data from 18 countries with contributions from 29 institutions. This report presents an overview of the database, details the individual contributed datasets and explains the quality assurance and harmonization process that lead to the final database.JRC.H.5-Land Resources Managemen

    Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

    Get PDF
    Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities
    corecore