Oral Presentations

L1.4 Europe

16:30 Wheat yield sensitivity to climate change across a European transect for a large ensemble of crop models

Pirttioja Nina¹, Carter Timothy R.¹, <u>Fronzek Stefan</u>¹, Bindi Marco², Hoffmann Holger³, Palosuo Taru⁴, Ruiz-Ramos Margarita⁵, Tao Fulu⁴, Trnka Miroslav^{6,7}, Acutis Marco⁸, Asseng Senthold⁹, Baranowski Piotr¹⁰, Basso Bruno¹¹, Bodin Per¹², Buis Samuel¹³, Cammarano Davide¹⁴, Deligios Paola¹⁵, Destain Marie-France¹⁶, Dumont Benjamin¹⁶, Ewert Frank³, Ferrise Roberto², François Louis¹⁶, Gaiser Thomas³, Hlavinka Petr^{6,7}, Jacquemin Ingrid¹⁶, Kersebaum Kurt Christian¹⁷, Kollas Chris¹⁷, Krzyszczak Jaromir¹⁰, Lorite Ignacio J.¹⁸, Minet Julien¹⁶, Minguez M. Ines⁵, Montesino Manuel¹⁹, Moriondo Marco²⁰, Müller Christoph²¹, Nendel Claas¹⁷, Öztürk Isik²², Perego Alessia⁸, Rodríguez Alfredo⁵, Ruane Alex C.^{23,24}, Ruget Françoise¹³, Sanna Mattia⁸, Semenov Mikhail²⁵, Slawinski Cezary¹⁰, Stratonovitch Pierre²⁵, Supit Iwan²⁶, Waha Katharina²¹, Wang Enli²⁷, Wu Lianhai²⁸, Zhao Zhigan^{27,29}, Rötter Reimund P.⁴

¹Finnish Environment Institute (SYKE), 00250 Helsinki, Finland

²University of Florence, 50144 Florence, Italy

³INRES, University of Bonn, 53115 Bonn, Germany

⁴Luke Natural Resources Institute, 00790 Helsinki, Finland

⁵Universidad Politecnica de Madrid, 28040 Madrid, Spain

⁶Institute of Agrosystems and Bioclimatology, Mendel University in Brno, Brno 613 oo, Czech Republic

⁷Global Change Research Centre AS CR, 603 oo Brno, Czech Republic

⁸University of Milan, 20133 Milan, Italy

⁹University of Florida, Gainesville, FL 32611, USA

¹⁰Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland

¹¹Michigan State University, East Lansing, MI 48824, USA

¹²Lund University, 223 62 Lund, Sweden

¹³INRA, UMR 1114 EMMAH, F-84914 Avignon, France

¹⁴James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland

¹⁵University of Sassari, 07100 Sassari, Italy

¹⁶Université de Liège, 4000 Liège, Belgium

¹⁷Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany

¹⁸IFAPA Junta de Andalucia, 14004 Córdoba, Spain

¹⁹University of Copenhagen, 2630 Taastrup, Denmark

²⁰CNR-IBIMET, 50145 Florence, Italy

²¹Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

²²Aarhus University, 8830 Tjele, Denmark

²³NASA Goddard Institute for Space Studies, New York, NY 10025, USA

²⁴Columbia University Center for Climate Systems Research, New York, NY 10025, USA

²⁵Rothamsted Research, Harpenden, Herts, AL5 2JQ, United Kingdom

²⁶Wageningen University, 6700 AA Wageningen, The Netherlands

²⁷CSIRO Agriculture Flagship, 2601 Canberra, Australia

²⁸Rothamsted Research, North Wyke, Okehampton EX20 2SB, United Kingdom
²⁹China Agricultural University, 100094 Beijing, China

The sensitivity of a 26-member ensemble of process-based wheat simulation models to perturbations in baseline temperature and precipitation was examined to construct impact response surfaces (IRS) of simulated yields. These show the yield response of the models to systematic changes to the 1981-2010 baseline in temperature (ranging from -2 to +9°C) and precipitation (-50 to +50%). IRSs were calculated for spring and winter wheat yields at four contrasting sites in Europe: southern Finland, Germany (winter wheat in the west; spring wheat in the east) and north-eastern Spain. Simplified assumptions were made about CO2 level, management and soils with the aim to distinguish differences in model response attributable to climate. Results indicate that the simulated absolute yield levels vary considerably between models under baseline and perturbed conditions. Across the ensemble, there is general agreement among models that the dominant sensitivity shifts from north to south along the transect. Hence, wheat yields are more sensitive to temperature changes at the Finnish site, sensitive to a combination of temperature and precipitation at the German sites, and more sensitive to precipitation at the Spanish site. Yields benefit from cooling at the latter sites, while temperatures are close to optimal for the baseline in Finland. Reasons for these site-specific patterns of response can be inferred, in part, from differences in baseline climate, soils, local cultivars and management practices. Standardized anomalies of annual modelled yields match observed regional yield anomalies more closely for spring wheat in Germany than at other sites, due in part to better resolved observations. The IRS approach offers promise in portraying model behaviour under changing climate, as well as other advantages for analysing and comparing results from multi-model ensemble simulations.

This study was conducted in the FACCE-JPI project MACSUR funded by the EC and national funding agencies.