204 research outputs found

    Teaching Intelligence Testing in APA-Accredited Programs: A National Survey

    Get PDF
    We surveyed instructors at APA-accredited clinical and school psychology programs across the United States and Canada to determine typical teaching practices in individual intelligence testing courses. The most recent versions of the Wechsler scales (Wechsler, 1989, 1991, 1997) and the Stanford-Binet (Thorndike, Hagan & Sattler, 1986) remain the primary tests taught in this course. Course instructors emphasized having students administer intelligence tests; however, relatively few instructors reported assessing students' final level of competence with regard to their test administration skills. The intelligence testing course appears quite time-intensive for instructors, and many teach the course with the aid of a teaching assistant. When compared with previous findings, current results suggest a good measure of stability over time regarding the core issues addressed and skills taught in the intelligence testing course.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd

    Get PDF
    Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling

    Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine

    Get PDF
    © 2019, The Author(s). Microbial electrochemical technology is emerging as an alternative way of treating waste and converting this directly to electricity. Intensive research on these systems is ongoing but it currently lacks the evaluation of possible environmental transmission of enteric viruses originating from the waste stream. In this study, for the first time we investigated this aspect by assessing the removal efficiency of hepatitis B core and surface antigens in cascades of continuous flow microbial fuel cells. The log-reduction (LR) of surface antigen (HBsAg) reached a maximum value of 1.86 ± 0.20 (98.6% reduction), which was similar to the open circuit control and degraded regardless of the recorded current. Core antigen (HBcAg) was much more resistant to treatment and the maximal LR was equal to 0.229 ± 0.028 (41.0% reduction). The highest LR rate observed for HBsAg was 4.66 ± 0.19 h−1 and for HBcAg 0.10 ± 0.01 h−1. Regression analysis revealed correlation between hydraulic retention time, power and redox potential on inactivation efficiency, also indicating electroactive behaviour of biofilm in open circuit control through the snorkel-effect. The results indicate that microbial electrochemical technologies may be successfully applied to reduce the risk of environmental transmission of hepatitis B virus but also open up the possibility of testing other viruses for wider implementation

    Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals

    Get PDF
    Funding: Hoge Veluwe great tits: the NIOO-KNAW, ERC, and numerous funding agencies; Wytham great tits: Biotechnology and Biological Sciences Research Council, ERC, and the UK Natural Environment Research Council (NERC).The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.PostprintPeer reviewe

    Effect of Anthropogenic Landscape Features on Population Genetic Differentiation of Przewalski's Gazelle: Main Role of Human Settlement

    Get PDF
    Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii), which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [FST/(1−FST) and F′ST/(1−F′ST)] in Mantel tests. IBD (isolation by distance) was also inferred as a significant factor in Mantel tests when genetic distance was measured as FST/(1−FST). However, using partial Mantel tests, AICc calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species

    Does Genetic Diversity Predict Health in Humans?

    Get PDF
    Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC), has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d2) at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d2) at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations

    Irish Cardiac Society - Proceedings of the Annual General Meeting held November 1993

    Get PDF

    Selection Signatures in Worldwide Sheep Populations

    Get PDF
    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments

    Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    Get PDF
    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed

    The immunology and genetics of resistance of sheep to Teladorsagia circumcincta

    Get PDF
    corecore