15 research outputs found

    The emergence of resistance to the benzimidazole anthlemintics in parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps

    Get PDF
    Anthelmintic resistance is a major problem for the control of parasitic nematodes of livestock and of growing concern for human parasite control. However, there is little understanding of how resistance arises and spreads or of the “genetic signature” of selection for this group of important pathogens. We have investigated these questions in the system for which anthelmintic resistance is most advanced; benzimidazole resistance in the sheep parasites Haemonchus contortus and Teladorsagia circumcincta. Population genetic analysis with neutral microsatellite markers reveals that T. circumcincta has higher genetic diversity but lower genetic differentiation between farms than H. contortus in the UK. We propose that this is due to epidemiological differences between the two parasites resulting in greater seasonal bottlenecking of H. contortus. There is a remarkably high level of resistance haplotype diversity in both parasites compared with drug resistance studies in other eukaryotic systems. Our analysis suggests a minimum of four independent origins of resistance mutations on just seven farms for H. contortus, and even more for T. circumincta. Both hard and soft selective sweeps have occurred with striking differences between individual farms. The sweeps are generally softer for T. circumcincta than H. contortus, consistent with its higher level of genetic diversity and consequent greater availability of new mutations. We propose a model in which multiple independent resistance mutations recurrently arise and spread by migration to explain the widespread occurrence of resistance in these parasites. Finally, in spite of the complex haplotypic diversity, we show that selection can be detected at the target locus using simple measures of genetic diversity and departures from neutrality. This work has important implications for the application of genome-wide approaches to identify new anthelmintic resistance loci and the likelihood of anthelmintic resistance emerging as selection pressure is increased in human soil-transmitted nematodes by community wide treatment programs

    Increased expression of a microRNA correlates with anthelmintic resistance in parasitic nematodes

    Get PDF
    Resistance to anthelmintic drugs is a major problem in the global fight against parasitic nematodes infecting humans and animals. While previous studies have identified mutations in drug target genes in resistant parasites, changes in the expression levels of both targets and transporters have also been reported. The mechanisms underlying these changes in gene expression are unresolved. Here, we take a novel approach to this problem by investigating the role of small regulatory RNAs in drug resistant strains of the important parasite Haemonchus contortus. microRNAs (miRNAs) are small (22 nt) non-coding RNAs that regulate gene expression by binding predominantly to the 3′ UTR of mRNAs. Changes in miRNA expression have been implicated in drug resistance in a variety of tumor cells. In this study, we focused on two geographically distinct ivermectin resistant strains of H. contortus and two lines generated by multiple rounds of backcrossing between susceptible and resistant parents, with ivermectin selection. All four resistant strains showed significantly increased expression of a single miRNA, hco-miR-9551, compared to the susceptible strain. This same miRNA is also upregulated in a multi-drug-resistant strain of the related nematode Teladorsagia circumcincta. hco-miR-9551 is enriched in female worms, is likely to be located on the X chromosome and is restricted to clade V parasitic nematodes. Genes containing predicted binding sites for hco-miR-9551 were identified computationally and refined based on differential expression in a transcriptomic dataset prepared from the same drug resistant and susceptible strains. This analysis identified three putative target mRNAs, one of which, a CHAC domain containing protein, is located in a region of the H. contortus genome introgressed from the resistant parent. hco-miR-9551 was shown to interact with the 3′ UTR of this gene by dual luciferase assay. This study is the first to suggest a role for miRNAs and the genes they regulate in drug resistant parasitic nematodes. miR-9551 also has potential as a biomarker of resistance in different nematode species

    Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

    Get PDF
    Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS) provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance

    Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing

    Get PDF
    The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study's observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Comparison of Four Diagnostic Methods for Detection and Relative Quantification of Haemonchus contortus Eggs in Feces Samples

    No full text
    We compared four methods for identification of Haemonchus contortus eggs. With increased trade in animals within and between countries and continents, it has become important to correctly identify H. contortus eggs in fecal samples. To validate the outcome of diagnostic tests, sheep feces (n = 38) were collected from naturally infected flocks in Sweden. Subsamples were analyzed with (a) McMaster egg counting; (b) differential counting of eggs after staining with peanut agglutinin (PNA); (c) detection of DNA following amplification by real-time quantitative polymerase chain reaction (qPCR); and (d) loop-mediated isothermal amplification (LAMP). Differences between similar tests (microscopic and molecular) and SD (±SD) were analyzed with Bland–Altman plots and Spearman rank correlation. Strongylid egg counts ranged from 200 to 12,100 eggs per gram (epg) (mean epg ± SD = 1,278 ± 2,049). Microscopy showed presence of H. contortus eggs in 27 (73%) unstained samples and in 28 (76%) samples stained with PNA, whereas 29 samples (78%) tested positive in LAMP and 34 (91%) in qPCR analysis. The cycle threshold (Ct) values with LAMP ranged between 13 and 38 (mean ± SD = 21 ± 7), and those in qPCR between 25 and 49 (mean ± SD = 33 ± 6). In the LAMP and qPCR analyses, seven (19%) and three (8%) samples, respectively, had a cycle threshold (Ct) >35, whereas no reactions were observed in eight (22%) and three (8%) samples, respectively. There was good agreement between the diagnostic tests based on microscopic examination and DNA detection, although the molecular tests were more sensitive. The bias between the microscopy methods (−4.2 ± 11) was smaller than for the molecular tests (−9.8 ± 10). The observed ranking in terms of test sensitivity was: McMaster counting by conventional microscopy < PNA < LAMP < qPCR. In conclusion, H. contortus can be identified by McMaster counting, without major mistakes regarding false positive results. However, molecular methods provide the capacity to diagnose H. contortus eggs with increased accuracy. This is essential when animals are investigated in quarantine or in studies evaluating anthelmintic treatment efficacy. These methods could also be applied to fecal samples from wildlife to investigate nematode transmission between wildlife and livestock

    The relative proportions of isotype-1 β-tubulin alleles encoding resistance-conferring polymorphisms at F167Y, E198L or F200Y.

    No full text
    <p>Populations for (A) <i>H</i>. <i>contortus</i> and (B) <i>T</i>. <i>circumcincta</i>, consisting of 30 or 32 individual worms, were pyrosequence genotyped at the three benzimidzole resistance associated SNPs in separate assays to determine the proportion of each SNP in each population.</p

    An automated, multiplex-tandem PCR platform for the diagnosis of gastrointestinal nematode infections in cattle : an Australian-European validation study

    Get PDF
    Detecting the genera and species of gastrointestinal (GI) nematode infections in faecal samples obtained from cattle requires the incubation of faeces ('larval culture') followed by identification of the third-stage larvae that are harvested after 10-14 days. Substantial research in the development of PCR-based methods for the rapid and specific identification GI nematodes has been conducted for small ruminants, whilst only few such assays have been developed for cattle. In the present paper we describe the development of an automated, robotic PCR platform for the detection and genus and/or species-specific identification of GI nematodes from bovine faecal samples. This test was then validated using samples from different regions of three countries (Australia, Belgium and Scotland). The PCR platform was found to be highly sensitive and specific for the identification of the important GI nematodes in naturally infected cattle (both estimates > 90%). The PCR platform can also estimate the percentage of genera or species present in a mixed-species infection, and was found superior to larval culture in terms of speed (1-2 days versus 1-2 weeks for culture), sensitivity and specificity. The PCR was simple to use and the operator requires no knowledge or experience to identify the nematodes present, compared to larval culture where even experienced operators can make substantial errors due to considerable overlap in the published characteristics of key species

    Network analysis of sequences of isotype-1 β-tubulin sequences.

    No full text
    <p>Split networks were generated with the neighbour-net method of SplitsTrees4 from (A) <i>H</i>. <i>contortus</i> sequences and (B) <i>T</i>. <i>circumcincta</i> sequences. The circles in Split networks represent the different haplotype and the size of the circles is proportional to the frequency in the population. The colours define the resistant haplotypes across positions P167, P198 and P200 (P167F:P198E:P200F, Susceptible = blue; P167F:P198E:P200Y, Resistant at P200 = Red; P167Y:P198E:P200F, Resistant at P167 = green; P167F:P198L:P200F, Resistant at P198 = orange).</p
    corecore