68 research outputs found
Review of electrofuel feasibility - Prospects for road, ocean, and air transport
To meet climate targets the emissions of greenhouse gases from transport need to be reduced considerably. Electrofuels (e-fuels) produced from low-CO2 electricity, water, and carbon (or nitrogen) are potential low-climate-impact transportation fuels. The purpose of this review is to provide a technoeconomic assessment of the feasibility and potential of e-fuels for road, ocean, and air transport. The assessment is based on a review of publications discussing e-fuels for one or more transport modes. For each transport mode, (a) e-fuel options are mapped, (b) cost per transport unit (e.g. vehicle km) and carbon abatement costs are estimated and compared to conventional options, (c) prospects and challenges are highlighted, and (d) policy context is described. Carbon abatement costs for e-fuels (considering vehicle cost, fuel production and distribution cost) are estimated to be in the range 110-1250 € tonne-1 CO2 with e-gasoline and e-diesel at the high end of the range. The investigated combined biofuel and e-fuels production pathways (based on forest residues and waste) are more cost-competitive than the stand-alone e-fuel production pathways, but the global availability of sustainable biomass is limited making these pathways more constrained. While the potential for e-fuels to decarbonize the transport sector has been discussed extensively in the literature, many uncertainties in terms of production costs, vehicle costs and environmental performance remain. It is too early to rule out or strongly promote particular e-fuels for different transport modes. For e-fuels to play a significant role in transportation, their attractiveness relative to other transport options needs to be improved. Incentives will be needed for e-fuels to be cost-effective and increased clarity on how e-fuels are linked to existing policies is needed
Review of electrofuel feasibility—cost and environmental impact
Electrofuels, fuels produced from electricity, water, and carbon or nitrogen, are of interest as substitutes for fossil fuels in all energy and chemical sectors. This paper focuses on electrofuels for transportation, where some can be used in existing vehicle/vessel/aircraft fleets and fueling infrastructure. The aim of this study is to review publications on electrofuels and summarize costs and environmental performance. A special case, denoted as bio-electrofuels, involves hydrogen supplementing existing biomethane production (e.g. anaerobic digestion) to generate additional or different fuels. We use costs, identified in the literature, to calculate harmonized production costs for a range of electrofuels and bio-electrofuels. Results from the harmonized calculations show that bio-electrofuels generally have lower costs than electrofuels produced using captured carbon. Lowest costs are found for liquefied bio-electro-methane, bio-electro-methanol, and bio-electro-dimethyl ether. The highest cost is for electro-jet fuel. All analyzed fuels have the potential for long-term production costs in the range 90-160 € MWh-1. Dominant factors impacting production costs are electrolyzer and electricity costs, the latter connected to capacity factors (CFs) and cost for hydrogen storage. Electrofuel production costs also depend on regional conditions for renewable electricity generation, which are analyzed in sensitivity analyses using corresponding CFs in four European regions. Results show a production cost range for electro-methanol of 76-118 € MWh-1 depending on scenario and region assuming an electrolyzer CAPEX of 300-450 € kWelec-1 and CFs of 45%-65%. Lowest production costs are found in regions with good conditions for renewable electricity, such as Ireland and western Spain. The choice of system boundary has a large impact on the environmental assessments. The literature is not consistent regarding the environmental impact from different CO2 sources. The literature, however, points to the fact that renewable energy sources are required to achieve low global warming impact over the electrofuel life cycle
Pan-Arctic seasonal cycles and long-term trends of aerosol properties from ten observatories
Even though the Arctic is remote, aerosol properties observed there are strongly influenced by anthropogenic emissions from outside the Arctic. This is particularly true for the so-called Arctic haze season (January through April). In summer (June through September), when atmospheric transport patterns change, and precipitation is more frequent, local Arctic, i.e. natural sources of aerosols and precursors, play an important role. Over the last decades, significant reductions in anthropogenic emissions have taken place. At the same time a large body of literature shows evidence that the Arctic is undergoing fundamental environmental changes due to climate forcing, leading to enhanced emissions by natural processes that may impact aerosol properties. In this study, we analyze nine aerosol chemical species and four particle optical properties from ten Arctic observatories (Alert, Gruvebadet, Kevo, Pallas, Summit, Thule, Tiksi, Barrow, Villum, Zeppelin) to understand changes in anthropogenic and natural aerosol contributions. Variables include equivalent black carbon, particulate sulfate, nitrate, ammonium, methanesulfonic acid, sodium, iron, calcium and potassium, as well as scattering and absorption coefficients, single scattering albedo and scattering Ångström exponent. First, annual cycles are investigated, which despite anthropogenic emission reductions still show the Arctic haze phenomenon. Second, long-term trends are studied using the Mann-Kendall Theil-Sen slope method. We find in total 28 significant trends over full station records, i.e. spanning more than a decade, compared to 17 significant decadal trends. The majority of significantly declining trends is from anthropogenic tracers and occurred during the haze period, driven by emission changes between 1990 and 2000. For the summer period, no uniform picture of trends has emerged. Twenty-one percent of trends, i.e. eleven out of 57, are significant, and of those five are positive and six are negative. Negative trends include not only anthropogenic tracers such as equivalent black carbon at Kevo, but also natural indicators such as methanesulfonic acid and non-sea salt calcium at Alert. Positive trends are observed for sulfate at Zeppelin and Gruvebadet. No clear evidence of a significant change in the natural aerosol contribution can be observed yet. However, testing the sensitivity of the Mann-Kendall Theil-Sen method, we find that monotonic changes of around 5 % per year in an aerosol property are needed to detect a significant trend within one decade. This highlights that long-term efforts well beyond a decade are needed to capture smaller changes. It is particularly important to understand the ongoing natural changes in the Arctic, where interannual variability can be high, such as with forest fire emissions and their influence on the aerosol population. To investigate the climate-change induced influence on the aerosol population and the resulting climate feedback, long-term observations of tracers more specific to natural sources are needed, as well as of particle microphysical properties such as size distributions, which can be used to identify changes in particle populations which are not well captured by mass-oriented methods such as bulk chemical composition
Community carriage of ESBL-producing Escherichia coli and Klebsiella pneumoniae: a cross-sectional study of risk factors and comparative genomics of carriage and clinical isolates
The global prevalence of infections caused by extended-spectrum βlactamase-producing Enterobacterales (ESBL-E) is increasing, and for Escherichia coli,
observations indicate that this is partly driven by community-onset cases. The ESBL-E
population structure in the community is scarcely described, and data on risk factors
for carriage are conflicting. Here, we report the prevalence and population structure of
fecal ESBL-producing E. coli and Klebsiella pneumoniae (ESBL-Ec/Kp) in a general adult
population, examine risk factors, and compare carriage isolates with contemporary
clinical isolates. Fecal samples obtained from 4,999 participants (54% women) ≥40
years in the seventh survey of the population-based Tromsø Study, Norway (2015,
2016), were screened for ESBL-Ec/Kp. In addition, we included 118 ESBL-Ec clinical
isolates from the Norwegian surveillance program in 2014. All isolates were wholegenome sequenced. Risk factors associated with carriage were analyzed using multivariable logistic regression. ESBL-Ec gastrointestinal carriage prevalence was 3.3% [95%
confidence interval (CI) 2.8%–3.9%, no sex difference] and 0.08% (0.02%–0.20%) for
ESBL-Kp. For ESBL-Ec, travel to Asia was the only independent risk factor (adjusted
odds ratio 3.46, 95% CI 2.18–5.49). E. coli ST131 was most prevalent in both collections.
However, the ST131 proportion was significantly lower in carriage (24%) versus clinical
isolates (58%, P < 0.001). Carriage isolates were genetically more diverse with a higher
proportion of phylogroup A (26%) than clinical isolates (5%, P < 0.001), indicating that
ESBL gene acquisition occurs in a variety of E. coli lineages colonizing the gut. STs
commonly related to extraintestinal infections were more frequent in clinical isolates
also carrying a higher prevalence of antimicrobial resistance, which could indicate
clone-associated pathogenicity
Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface
The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to available aerosol. The composition and sources of the climate-relevant aerosols, affecting Arctic cloud formation and altering their microphysics, remain largely elusive due to a lack of harmonized concurrent multi-component, multi-site, and multi-season observations. Here, we present a dataset on the overall chemical composition and seasonal variability of the Arctic total particulate matter (with a size cut at 10 mu m, PM10, or without any size cut) at eight observatories representing all Arctic sectors. Our holistic observational approach includes the Russian Arctic, a significant emission source area with less dedicated aerosol monitoring, and extends beyond the more traditionally studied summer period and black carbon/sulfate or fine-mode pollutants. The major airborne Arctic PM components in terms of dry mass are sea salt, secondary (non-sea-salt, nss) sulfate, and organic aerosol (OA), with minor contributions from elemental carbon (EC) and ammonium. We observe substantial spatiotemporal variability in component ratios, such as EC/OA, ammonium/nss-sulfate and OA/nss-sulfate, and fractional contributions to PM. When combined with component-specific back-trajectory analysis to identify marine or terrestrial origins, as well as the companion study by Moschos et al 2022 Nat. Geosci. focusing on OA, the composition analysis provides policy-guiding observational insights into sector-based differences in natural and anthropogenic Arctic aerosol sources. In this regard, we first reveal major source regions of inner-Arctic sea salt, biogenic sulfate, and natural organics, and highlight an underappreciated wintertime source of primary carbonaceous aerosols (EC and OA) in West Siberia, potentially associated with the oil and gas sector. The presented dataset can assist in reducing uncertainties in modelling pan-Arctic aerosol-climate interactions, as the major contributors to yearly aerosol mass can be constrained. These models can then be used to predict the future evolution of individual inner-Arctic atmospheric PM components in light of current and emerging pollution mitigation measures and improved region-specific emission inventories.Peer reviewe
Skin microbiome prior to development of atopic dermatitis:early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year
Background: Disease flares of established atopic dermatitis (AD) are generally associated with a low-diversity skin microbiota and Staphylococcus aureus dominance. The temporal transition of the skin microbiome between early infancy and the dysbiosis of established AD is unknown. Methods: We randomly selected 50 children from the Cork Babies After SCOPE: Evaluating the Longitudinal Impact Using Neurological and Nutritional Endpoints (BASELINE) longitudinal birth cohort for microbiome sampling at 3 points in the first 6 months of life at 4 skin sites relevant to AD: the antecubital and popliteal fossae, nasal tip, and cheek. We identified 10 infants with AD and compared them with 10 randomly selected control infants with no AD. We performed bacterial 16S ribosomal RNA sequencing and analysis directly from clinical samples. Results: Bacterial community structures and diversity shifted over time, suggesting that age strongly affects the skin microbiome in infants. Unlike established AD, these patients with infantile AD did not have noticeably dysbiotic communities before or with disease and were not colonized by S aureus. In comparing patients and control subjects, infants who had affected skin at month 12 had statistically significant differences in bacterial communities on the antecubital fossa at month 2 compared with infants who were unaffected at month 12. In particular, commensal staphylococci were significantly less abundant in infants affected at month 12, suggesting that this genus might protect against the later development of AD. Conclusions: This study suggests that 12-month-old infants with AD were not colonized with S aureus before having AD. Additional studies are needed to confirm whether colonization with commensal staphylococci modulates skin immunity and attenuates development of AD
Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols
Organic aerosols in the Arctic are predominantly fuelled by anthropogenic sources in winter and natural sources in summer, according to observations from eight sites across the Arctic Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.Peer reviewe
- …