138 research outputs found
Defining substrate selection by rhinoviral 2A proteinase through its crystal structure with the inhibitor zVAM.fmk
\ua9 2021 The Authors. Picornavirus family members cause disease in humans. Human rhinoviruses (RV), the main causative agents of the common cold, increase the severity of asthma and COPD; hence, effective agents against RVs are required. The 2A proteinase (2Apro), found in all enteroviruses, represents an attractive target; inactivating mutations in poliovirus 2Apro result in an extension of the VP1 protein preventing infectious virion assembly. Variations in sequence and substrate specificity on eIF4G isoforms between RV 2Apro of genetic groups A and B hinder 2Apro as drug targets. Here, we demonstrate that although RV-A2 and RV-B4 2Apro cleave the substrate GAB1 at different sites, the 2Apro from both groups cleave equally efficiently an artificial site containing P1 methionine. We determined the RV-A2 2Apro structure complexed with zVAM.fmk, containing P1 methionine. Analysis of this first 2Apro-inhibitor complex reveals a conserved hydrophobic P4 pocket among enteroviral 2Apro as a potential target for broad-spectrum anti-enteroviral inhibitors
Scale-dependent response diversity of seabirds to prey in the North Sea
Functional response diversity is defined as the diversity of responses to environmental change among species that contribute to the same ecosystem function. Because different ecological processes dominate on different spatial and temporal scales, response diversity is likely to be scale dependent. Using three extensive data sets on seabirds, pelagic fish, and zooplankton, we investigate the strength and diversity in the response of seabirds to prey in the North Sea over three scales of ecological organization. Two-stage analyses were used to partition the variance in the abundance of predators and prey among the different scales of investigation: variation from year to year, variation among habitats, and variation on the local patch scale. On the year-to-year scale, we found a strong and synchronous response of seabirds to the abundance of prey, resulting in low response diversity. Conversely, as different seabird species were found in habitats dominated by different prey species, we found a high diversity in the response of seabirds to prey on the habitat scale. Finally, on the local patch scale, seabirds were organized in multispecies patches. These patches were weakly associated with patches of prey, resulting in a weak response strength and a low response diversity. We suggest that ecological similarities among seabird species resulted in low response diversity on the year-to-year scale. On the habitat scale, we suggest that high response diversity was due to interspecific competition and niche segregation among seabird species. On the local patch scale, we suggest that facilitation with respect to the detection and accessibility of prey patches resulted in overlapping distribution of seabirds but weak associations with prey. The observed scale dependencies in response strength and diversity have implications for how the seabird community will respond to different environmental disturbances
Translation Directed by Hepatitis A Virus IRES in the Absence of Active eIF4F Complex and eIF2
Abstract Translation directed by several picornavirus IRES elements can usually take place after cleavage of eIF4G by picornavirus proteases 2A pro or L pro . The hepatitis A virus (HAV) IRES is thought to be an exception to this rule because it requires intact eIF4F complex for translation. In line with previous results we report that poliovirus (PV) 2A pro strongly blocks protein synthesis directed by HAV IRES. However, in contrast to previous findings we now demonstrate that eIF4G cleavage by footand-mouth disease virus (FMDV) L pro strongly stimulates HAV IRES-driven translation. Thus, this is the first observation that 2A pro and L pro exhibit opposite effects to what was previously thought to be the case in HAV IRES. This effect has been observed both in hamster BHK and human hepatoma Huh7 cells. In addition, this stimulation of translation is also observed in cell free systems after addition of purified L pro . Notably, in presence of this FMDV protease, translation directed by HAV IRES takes place when eIF2a has been inactivated by phosphorylation. Our present findings clearly demonstrate that protein synthesis directed by HAV IRES can occur when eIF4G has been cleaved and after inactivation of eIF2. Therefore, translation directed by HAV IRES without intact eIF4G and active eIF2 is similar to that observed with other picornavirus IRESs
Dissecting distinct proteolytic activities of FMDV Lpro implicates cleavage and degradation of RLR signaling proteins, not its deISGylase/DUB activity, in type I interferon suppression
Author summary Outbreaks of the picornavirus foot-and-mouth disease virus (FMDV) have significant consequences for animal health and product safety and place a major economic burden on the global livestock industry. Understanding how this notorious animal pathogen suppresses the antiviral type I interferon (IFN-alpha/beta) response may help to develop countermeasures to control FMDV infections. FMDV suppresses the IFN-alpha/beta response through the activity of its Leader protein (L-pro), a protease that can cleave host cell proteins. L(pro)was also shown to have deubiquitinase and deISGylase activity, raising the possibility that L(pro)suppresses IFN-alpha/beta by removing ubiquitin and/or ISG15, two posttranslational modifications that can regulate the activation, interactions and localization of (signaling) proteins. Here, we show that TBK1 and MAVS, two signaling proteins that are important for activation of IFN-alpha/beta gene transcription, are cleaved by L-pro. By generating L(pro)mutants lacking either of these two activities, we demonstrate that L-pro's ability to cleave signaling proteins, but not its deubiquitination/deISGylase activity, correlates with suppression of IFN-beta gene transcription. The type I interferon response is an important innate antiviral pathway. Recognition of viral RNA by RIG-I-like receptors (RLRs) activates a signaling cascade that leads to type I interferon (IFN-alpha/beta) gene transcription. Multiple proteins in this signaling pathway (e.g. RIG-I, MDA5, MAVS, TBK1, IRF3) are regulated by (de)ubiquitination events. Most viruses have evolved mechanisms to counter this antiviral response. The leader protease (L-pro) of foot-and-mouth-disease virus (FMDV) has been recognized to reduce IFN-alpha/beta gene transcription; however, the exact mechanism is unknown. The proteolytic activity of L(pro)is vital for releasing itself from the viral polyprotein and for cleaving and degrading specific host cell proteins, such as eIF4G and NF-kappa B. In addition, L(pro)has been demonstrated to have deubiquitination/deISGylation activity. L-pro's deubiquitination/deISGylation activity and the cleavage/degradation of signaling proteins have both been postulated to be important for reduced IFN-alpha/beta gene transcription. Here, we demonstrate that TBK1, the kinase that phosphorylates and activates the transcription factor IRF3, is cleaved by L(pro)in FMDV-infected cells as well as in cells infected with a recombinant EMCV expressing L-pro.In vitrocleavage experiments revealed that L(pro)cleaves TBK1 at residues 692-694. We also observed cleavage of MAVS in HeLa cells infected with EMCV-L-pro, but only observed decreasing levels of MAVS in FMDV-infected porcine LFPK alpha V beta 6 cells. We set out to dissect L-pro's ability to cleave RLR signaling proteins from its deubiquitination/deISGylation activity, to determine their relative contributions to the reduction of IFN-alpha/beta gene transcription. The introduction of specific mutations, of which several were based on the recently published structure of L(pro)in complex with ISG15, allowed us to identify specific amino acid substitutions that separate the different proteolytic activities of L-pro. Characterization of the effects of these mutations revealed that L-pro's ability to cleave RLR signaling proteins but not its deubiquitination/deISGylation activity correlates with the reduced IFN-beta gene transcription
Vaccinia virus immunomodulator A46 : a lipid and protein-binding scaffold for sequestering host TIR-domain proteins
TS received Austrian Science Fund (FWF) grants P24038, W1221 and W1258. GAB is a member of Max F. Perutz Laboratories and the Vienna International PostDoctoral Program (VIPS). TKS is a holder of Wellcome Trust grant 097831. IU has Spanish Ministry of Economy and Competitiveness grant BIO2013-49604-EXP.Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N-and C-terminal domains and SAXS analysis of full-length protein A46(1-240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.Publisher PDFPeer reviewe
Building leaders for the UN Ocean Science Decade : a guide to supporting early career women researchers within academic marine research institutions
Diverse and inclusive marine research is paramount to addressing ocean sustainability challenges in the 21st century, as envisioned by the UN Decade of Ocean Science for Sustainable Development. Despite increasing efforts to diversify ocean science, women continue to face barriers at various stages of their career, which inhibits their progression to leadership within academic institutions. In this perspective, we draw on the collective experiences of thirty-four global women leaders, bolstered by a narrative review, to identify practical strategies and actions that will help empower early career women researchers to become the leaders of tomorrow. We propose five strategies: (i) create a more inclusive culture, (ii) ensure early and equitable career development opportunities for women ECRs, (iii) ensure equitable access to funding for women ECRs, (iv) offer mentoring opportunities and, (v) create flexible, family-friendly environments. Transformational, meaningful, and lasting change will only be achieved through commitment and collaborative action across various scales and by multiple stakeholders.Peer reviewe
Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing
The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study's observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies
A Diverse Group of Previously Unrecognized Human Rhinoviruses Are Common Causes of Respiratory Illnesses in Infants
Human rhinoviruses (HRVs) are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples). Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4%) HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs) segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C"). None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group
Oceans and Coastal Ecosystems and Their Services
Ocean and coastal ecosystems support life on Earth and many
aspects of human well-being. Covering two-thirds of the planet,
the ocean hosts vast biodiversity and modulates the global climate
system by regulating cycles of heat, water and elements, including
carbon. Marine systems are central to many cultures, and they also
provide food, minerals, energy and employment to people. Since
previous assessments1
, new laboratory studies, field observations
and process studies, a wider range of model simulations, Indigenous
knowledge, and local knowledge have provided increasing evidence
on the impacts of climate change on ocean and coastal systems, how
human communities are experiencing these impacts, and the potential
solutions for ecological and human adaptation.Peer reviewe
- …