76 research outputs found

    Effects of consecutive days of match play on technical performance in tennis

    Full text link
    © 2016 Informa UK Limited, trading as Taylor & Francis Group. Elite tennis is characterised by repeated bouts of up to 5-set match play, yet little is known about the technical requirements of shots played. This study therefore investigated technical performance changes over consecutive days of prolonged, simulated tennis match play. A total of 7 well-trained men tennis players performed 4 consecutive days of competitive 4-h match play. Matches were notated to determine between-day changes in groundstroke and serve performance, as well as point and match durations. Changes ≄75% likely to exceed the smallest important effect size (0.2) were considered meaningful and represented as effect size ± 90% confidence interval. Effective playing time reduced on days 3 and 4, alongside likely increases in “stretch” groundstrokes over the 4 days (mean effect size ± 90% confidence interval; 0.57 ± 0.38) and “stretch” backhand returns on days 2 and 3 (0.39 ± 0.54 and 0.67 ± 0.55). Relative unforced errors increased on day 4 (vs. day 2; 0.36 ± 0.22) and second-serve winning percentage reduced after day 1 (−0.47 ± 0.50). Further, a likely increase in emotional outbursts characterised day 3 (vs. day 2; 0.73 ± 0.57). Consecutive-day match play impairs hitting accuracy, stroke positioning and emotional responses; an understanding of which prepares players for elite-standard tennis tournament play

    High-intensity interval exercise induces greater acute changes in sleep, appetite-related hormones, and free-living energy intake than does moderate-intensity continuous exercise

    Full text link
    © 2019, Canadian Science Publishing. All rights reserved. The aim of this study was to compare the effect of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on sleep characteristics, appetite-related hormones, and eating behaviour. Eleven overweight, inactive men completed 2 consecutive nights of sleep assessments to determine baseline (BASE) sleep stages and arousals recorded by polysomnography (PSG). On separate afternoons (1400–1600 h), participants completed a 30-min exercise bout: either (i) MICE (60% peak oxygen consumption) or (ii) HIIE (60 s of work at 100% peak oxygen consumption: 240 s of rest at 50% peak oxygen consumption), in a randomised order. Measures included appetite-related hormones (acylated ghrelin, leptin, and peptide tyrosine tyrosine) and glucose before exercise, 30 min after exercise, and the next morning after exercise; PSG sleep stages; and actigraphy (sleep quantity and quality); in addition, self-reported sleep and food diaries were recorded until 48 h after exercise. There were no between-trial differences for time in bed (p = 0.19) or total sleep time (p = 0.99). After HIIE, stage N3 sleep was greater (21% ± 7%) compared with BASE (18% ± 7%; p = 0.02). In addition, the number of arousals during rapid eye movement sleep were lower after HIIE (7 ± 5) compared with BASE (11 ± 7; p = 0.05). Wake after sleep onset was lower following MICE (41 min) compared with BASE (56 min; p = 0.02). Acylated ghrelin was lower and glucose was higher at 30 min after HIIE when compared with MICE (p ≀ 0.05). There were no significant differences between conditions in terms of total energy intake (p ≄ 0.05). HIIE appears to be more beneficial than MICE for improving sleep quality and inducing favourable transient changes in appetite-related hormones in overweight, inactive men. However, energy intake was not altered regardless of exercise intensity

    Evening high-intensity interval exercise does not disrupt sleep or alter energy intake despite changes in acylated ghrelin in middle-aged men

    Full text link
    © 2019 The Authors. Experimental Physiology © 2019 The Physiological Society New Findings: What is the central question of this study? What are the interactions between sleep and appetite following early evening high-intensity interval exercise (HIIE)? What is the main finding and its importance? HIIE can be performed in the early evening without subsequent sleep disruptions and may favourably alter appetite-related hormone concentrations. Nonetheless, perceived appetite and energy intake do not change with acute HIIE regardless of time of day. Abstract: Despite exercise benefits for sleep and appetite, due to increased time restraints, many adults remain inactive. Methods to improve exercise compliance include preferential time-of-day or engaging in short-duration, high-intensity interval exercise (HIIE). Hence, this study aimed to compare effects of HIIE time-of-day on sleep and appetite. Eleven inactive men undertook sleep monitoring to determine baseline (BASE) sleep stages and exclude sleep disorders. On separate days, participants completed 30 min HIIE (60 s work at 100% (Formula presented.), 240 s rest at 50% (Formula presented.)) in (1) the morning (MORN; 06.00–07.00 h), (2) the afternoon (AFT; 14.00–16.00 h) and (3) the early evening (EVEN: 19.00–20.00 h). Measures included appetite-related hormones (acylated ghrelin, leptin, peptide tyrosine tyrosine) and glucose pre-exercise, 30 min post-exercise and the next morning; overnight polysomnography (PSG; sleep stages); and actigraphy, self-reported sleep and food diaries for 48 h post-exercise. There were no between-trial differences for total sleep time (P = 0.46). Greater stage N3 sleep was recorded for MORN (23 ± 7%) compared to BASE (18 ± 7%; P = 0.02); however, no between-trial differences existed (P > 0.05). Rapid eye movement (REM) sleep was lower and non-REM sleep was higher for EVEN compared to BASE (P ≀ 0.05). At 30 min post-exercise, ghrelin was higher for AFT compared to MORN and EVEN (P = 0.01), while glucose was higher for MORN compared to AFT and EVEN (P ≀ 0.02). No between-trial differences were observed for perceived appetite (P ≄ 0.21) or energy intake (P = 0.57). Early evening HIIE can be performed without subsequent sleep disruptions and reduces acylated ghrelin. However, perceived appetite and energy intake appear to be unaffected by HIIE time of day

    Contrasting invasion patterns in intertidal and subtidal mussel communities.

    Get PDF
    Two invasive mussel species are known from South Africa, Mytilus galloprovincialis and Semimytilus algosus. Most of the existing research on these invaders has focused on the intertidal zone, with little attention paid to subtidal habitats. This study addresses this knowledge gap by quantifying the relative abundance and size of native and alien mussels from the high-shore down to the subtidal zone, while accounting for the effects of wave exposure. This was achieved through extensive surveys along the west coast of South Africa and the Cape Peninsula. At all shore zones, mussel abundance varied among species and wave exposures. In intertidal habitats, invasive species were recorded in greatest abundances at wave-exposed sites. Specifically, M. galloprovincialis was dominant in the high-shore, but this pattern changed down the shore. In the mid-shore, the invaders were equally dominant over native mussels, while in the low-shore S. algosus became the most abundant. Notably, the native Choromytilus meridionalis was absent intertidally. In the subtidal zone M. galloprovincialis was rarely present, whereas S. algosus maintained a strong presence. The maximum size of native Aulacomya atra and invasive S. algosus in the subtidal zone was roughly double that recorded in the intertidal zone. Importantly, these results highlight that observations made from intertidal studies of mussel invasions cannot be used to infer subtidal patterns

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Improved risk stratification of patients with atrial fibrillation: an integrated GARFIELD-AF tool for the prediction of mortality, stroke and bleed in patients with and without anticoagulation.

    Get PDF
    OBJECTIVES: To provide an accurate, web-based tool for stratifying patients with atrial fibrillation to facilitate decisions on the potential benefits/risks of anticoagulation, based on mortality, stroke and bleeding risks. DESIGN: The new tool was developed, using stepwise regression, for all and then applied to lower risk patients. C-statistics were compared with CHA2DS2-VASc using 30-fold cross-validation to control for overfitting. External validation was undertaken in an independent dataset, Outcome Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). PARTICIPANTS: Data from 39 898 patients enrolled in the prospective GARFIELD-AF registry provided the basis for deriving and validating an integrated risk tool to predict stroke risk, mortality and bleeding risk. RESULTS: The discriminatory value of the GARFIELD-AF risk model was superior to CHA2DS2-VASc for patients with or without anticoagulation. C-statistics (95% CI) for all-cause mortality, ischaemic stroke/systemic embolism and haemorrhagic stroke/major bleeding (treated patients) were: 0.77 (0.76 to 0.78), 0.69 (0.67 to 0.71) and 0.66 (0.62 to 0.69), respectively, for the GARFIELD-AF risk models, and 0.66 (0.64-0.67), 0.64 (0.61-0.66) and 0.64 (0.61-0.68), respectively, for CHA2DS2-VASc (or HAS-BLED for bleeding). In very low to low risk patients (CHA2DS2-VASc 0 or 1 (men) and 1 or 2 (women)), the CHA2DS2-VASc and HAS-BLED (for bleeding) scores offered weak discriminatory value for mortality, stroke/systemic embolism and major bleeding. C-statistics for the GARFIELD-AF risk tool were 0.69 (0.64 to 0.75), 0.65 (0.56 to 0.73) and 0.60 (0.47 to 0.73) for each end point, respectively, versus 0.50 (0.45 to 0.55), 0.59 (0.50 to 0.67) and 0.55 (0.53 to 0.56) for CHA2DS2-VASc (or HAS-BLED for bleeding). Upon validation in the ORBIT-AF population, C-statistics showed that the GARFIELD-AF risk tool was effective for predicting 1-year all-cause mortality using the full and simplified model for all-cause mortality: C-statistics 0.75 (0.73 to 0.77) and 0.75 (0.73 to 0.77), respectively, and for predicting for any stroke or systemic embolism over 1 year, C-statistics 0.68 (0.62 to 0.74). CONCLUSIONS: Performance of the GARFIELD-AF risk tool was superior to CHA2DS2-VASc in predicting stroke and mortality and superior to HAS-BLED for bleeding, overall and in lower risk patients. The GARFIELD-AF tool has the potential for incorporation in routine electronic systems, and for the first time, permits simultaneous evaluation of ischaemic stroke, mortality and bleeding risks. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier for GARFIELD-AF (NCT01090362) and for ORBIT-AF (NCT01165710)

    Two-year outcomes of patients with newly diagnosed atrial fibrillation: results from GARFIELD-AF.

    Get PDF
    AIMS: The relationship between outcomes and time after diagnosis for patients with non-valvular atrial fibrillation (NVAF) is poorly defined, especially beyond the first year. METHODS AND RESULTS: GARFIELD-AF is an ongoing, global observational study of adults with newly diagnosed NVAF. Two-year outcomes of 17 162 patients prospectively enrolled in GARFIELD-AF were analysed in light of baseline characteristics, risk profiles for stroke/systemic embolism (SE), and antithrombotic therapy. The mean (standard deviation) age was 69.8 (11.4) years, 43.8% were women, and the mean CHA2DS2-VASc score was 3.3 (1.6); 60.8% of patients were prescribed anticoagulant therapy with/without antiplatelet (AP) therapy, 27.4% AP monotherapy, and 11.8% no antithrombotic therapy. At 2-year follow-up, all-cause mortality, stroke/SE, and major bleeding had occurred at a rate (95% confidence interval) of 3.83 (3.62; 4.05), 1.25 (1.13; 1.38), and 0.70 (0.62; 0.81) per 100 person-years, respectively. Rates for all three major events were highest during the first 4 months. Congestive heart failure, acute coronary syndromes, sudden/unwitnessed death, malignancy, respiratory failure, and infection/sepsis accounted for 65% of all known causes of death and strokes for <10%. Anticoagulant treatment was associated with a 35% lower risk of death. CONCLUSION: The most frequent of the three major outcome measures was death, whose most common causes are not known to be significantly influenced by anticoagulation. This suggests that a more comprehensive approach to the management of NVAF may be needed to improve outcome. This could include, in addition to anticoagulation, interventions targeting modifiable, cause-specific risk factors for death. CLINICAL TRIAL REGISTRATION: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    • 

    corecore