57 research outputs found

    Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response

    Get PDF
    Reduced-complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive Earth system models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect RCMIP will extend over multiple phases, with Phase 1 being the first. In Phase 1, we focus on the RCMs' global-mean temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on complex Earth system and atmosphere–ocean general circulation models. Using both scenario-based and idealised experiments, we examine RCMs' global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the approximately 1 ∘C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-mean-square error of 0.2 ∘C over a range of experiments. Furthermore, we find that, for the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP)-based scenario pairs that share the same IPCC Fifth Assessment Report (AR5)-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our idealised setup of RCMs with a climate sensitivity of 3 ∘C, the difference for the ssp585–rcp85 pair by 2100 is around 0.23∘C(±0.12 ∘C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the utility of RCMIP's open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented here and deepen our understanding of RCMs

    Declining uncertainty in transient climate response as CO2 forcing dominates future climate change

    Get PDF
    Carbon dioxide has exerted the largest portion of radiative forcing and surface temperature change over the industrial era, but other anthropogenic influences have also contributed. However, large uncertainties in total forcing make it difficult to derive climate sensitivity from historical observations. Anthropogenic forcing has increased between the Fourth and Fifth Assessment Reports of the Intergovernmental Panel of Climate Change (IPCC; refs,), although its relative uncertainty has decreased. Here we show, based on data from the two reports, that this evolution towards lower uncertainty can be expected to continue into the future. Because it is easier to reduce air pollution than carbon dioxide emissions and because of the long lifetime of carbon dioxide, the less uncertain carbon dioxide forcing is expected to become increasingly dominant. Using a statistical model, we estimate that the relative uncertainty in anthropogenic forcing of more than 40% quoted in the latest IPCC report for 2011 will be almost halved by 2030, even without better scientific understanding. Absolute forcing uncertainty will also decline for the first time, provided projected decreases in aerosols occur. Other factors being equal, this stronger constraint on forcing will bring a significant reduction in the uncertainty of observation-based estimates of the transient climate response, with a 50% reduction in its uncertainty range expected by 2030

    Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project)

    Get PDF
    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluated the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Jungfraujoch and Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to capture both the observed temporal trends and the magnitudes well at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice-core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores indicates a strong influence from Western Europe, but the modeled BC increases in that period are consistent with the emission changes in Eastern Europe, the Middle East, South and East Asia. At the Alps site, the simulated BC suggests a strong influence from Europe, which agrees with the Alps ice core observations. Models successfully simulate higher BC concentrations observed at Zuoqiupu during the non-monsoon season than monsoon season, but models underpredict BC in both seasons. Despite a large divergence in BC deposition at two Antarctic ice core sites, models are able to capture the relative increase from preindustrial to present-day seen in the ice cores. In 2000 relative to 1850, globally annually averaged BC surface albedo forcing from the offline simulations ranges from 0.014 to 0.019 W m−2 among the ACCMIP models. Comparing offline and online BC albedo forcings computed by some of the same models, we find that the global annual mean can vary by up to a factor of two because of different aerosol models or different BC-snow parameterizations and snow cover. The spatial distributions of the offline BC albedo forcing in 2000 show especially high BC forcing (i.e. over 0.1 W m−2) over Manchuria, Karakoram, and most of the Former USSR. Models predict the highest global annual mean BC forcing in 1980 rather than 2000, mostly driven by the high fossil fuel and biofuel emissions in the Former USSR in 1980

    Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing

    Get PDF
    Background: Epidemiological studies have demonstrated an association between the degree of food processing in our diet and the risk of various chronic diseases. Much of this evidence is based on the international Nova classification system, which classifies food into four groups based on the type of processing: (1) Unprocessed and minimally processed foods, (2) Processed culinary ingredients, (3) Processed foods, and (4) “Ultra-processed” foods (UPF). The ability of the Nova classification to accurately characterise the degree of food processing across consumption patterns in various European populations has not been investigated so far. Therefore, we applied the Nova coding to data from the European Prospective Investigation into Cancer and Nutrition (EPIC) in order to characterize the degree of food processing in our diet across European populations with diverse cultural and socio-economic backgrounds and to validate this Nova classification through comparison with objective biomarker measurements. Methods: After grouping foods in the EPIC dataset according to the Nova classification, a total of 476,768 participants in the EPIC cohort (71.5% women; mean age 51 [standard deviation (SD) 9.93]; median age 52 [percentile (p)25–p75: 58–66] years) were included in the cross-sectional analysis that characterised consumption patterns based on the Nova classification. The consumption of food products classified as different Nova categories were compared to relevant circulating biomarkers denoting food processing, measured in various subsamples (N between 417 and 9,460) within the EPIC cohort via (partial) correlation analyses (unadjusted and adjusted by sex, age, BMI and country). These biomarkers included an industrial transfatty acid (ITFA) isomer (elaidic acid; exogenous fatty acid generated during oil hydrogenation and heating) and urinary 4-methyl syringol sulfate (an indicator for the consumption of smoked food and a component of liquid smoke used in UPF). Results: Contributions of UPF intake to the overall diet in % grams/day varied across countries from 7% (France) to 23% (Norway) and their contributions to overall % energy intake from 16% (Spain and Italy) to >45% (in the UK and Norway). Differences were also found between sociodemographic groups; participants in the highest fourth of UPF consumption tended to be younger, taller, less educated, current smokers, more physically active, have a higher reported intake of energy and lower reported intake of alcohol. The UPF pattern as defined based on the Nova classification (group 4;% kcal/day) was positively associated with blood levels of industrial elaidic acid (r = 0.54) and 4-methyl syringol sulfate (r = 0.43). Associations for the other 3 Nova groups with these food processing biomarkers were either inverse or non-significant (e.g., for unprocessed and minimally processed foods these correlations were –0.07 and –0.37 for elaidic acid and 4-methyl syringol sulfate, respectively). Conclusion: These results, based on a large pan-European cohort, demonstrate sociodemographic and geographical differences in the consumption of UPF. Furthermore, these results suggest that the Nova classification can accurately capture consumption of UPF, reflected by stronger correlations with circulating levels of industrial elaidic acid and a syringol metabolite compared to diets high in minimally processed foods

    Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections

    Get PDF
    Over the last decades, climate science has evolved rapidly across multiple expert domains. Our best tools to capture state-of-the-art knowledge in an internally self-consistent modeling framework are the increasingly complex fully coupled Earth System Models (ESMs). However, computational limitations and the structural rigidity of ESMs mean that the full range of uncertainties across multiple domains are difficult to capture with ESMs alone. The tools of choice are instead more computationally efficient reduced complexity models (RCMs), which are structurally flexible and can span the response dynamics across a range of domain-specific models and ESM experiments. Here we present Phase 2 of the Reduced Complexity Model Intercomparison Project (RCMIP Phase 2), the first comprehensive intercomparison of RCMs that are probabilistically calibrated with key benchmark ranges from specialized research communities. Unsurprisingly, but crucially, we find that models which have been constrained to reflect the key benchmarks better reflect the key benchmarks. Under the low-emissions SSP1-1.9 scenario, across the RCMs, median peak warming projections range from 1.3 to 1.7°C (relative to 1850–1900, using an observationally based historical warming estimate of 0.8°C between 1850–1900 and 1995–2014). Further developing methodologies to constrain these projection uncertainties seems paramount given the international community's goal to contain warming to below 1.5°C above preindustrial in the long-term. Our findings suggest that users of RCMs should carefully evaluate their RCM, specifically its skill against key benchmarks and consider the need to include projections benchmarks either from ESM results or other assessments to reduce divergence in future projections. Plain Language Summary Our best tools to capture state-of-the-art knowledge are complex, fully coupled Earth System Models (ESMs). However, ESMs are expensive to run and no single ESM can easily produce responses which represent the full range of uncertainties. Instead, for some applications, computationally efficient reduced complexity climate models (RCMs) are used in a probabilistic setup. An example of these applications is estimating the likelihood that an emissions scenario will stay below a certain global-mean temperature change. Here we present a study (referred to as the Reduced Complexity Model Intercomparison Project (RCMIP) Phase 2) which investigates the extent to which different RCMs can be probabilistically calibrated to reproduce knowledge from specialized research communities. We find that the agreement between each RCM and the benchmarks varies, although the best performing models show good agreement across the majority of benchmarks. Under a very-low-emissions scenario median peak warming projections range from 1.3 to 1.7°C (relative to 1850–1900, assuming historical warming of 0.8°C between 1850–1900 and 1995–2014). Investigating new ways to reduce these projection uncertainties seems paramount given the international community's goal to limit warming to below 1.5°C above preindustrial in the long-term

    Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice

    Get PDF
    Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain

    Doyne lecture 2016:intraocular health and the many faces of inflammation

    Get PDF
    Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses

    Aerosols in the Pre-industrial Atmosphere

    Get PDF
    Purpose of Review: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. Recent Findings: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. Summary: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future
    corecore