
                          Dick, A. D. (2017). Doyne lecture 2016: intraocular health and the many
faces of inflammation. Eye, 31(1), 87–96. DOI: 10.1038/eye.2016.177

Peer reviewed version

Link to published version (if available):
10.1038/eye.2016.177

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Nature at http://www.nature.com/eye/journal/vaop/ncurrent/abs/eye2016177a.html. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/83929071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1038/eye.2016.177
http://research-information.bristol.ac.uk/en/publications/doyne-lecture-2016(df4e00ba-231d-4e62-aa6e-f1ff817398ea).html
http://research-information.bristol.ac.uk/en/publications/doyne-lecture-2016(df4e00ba-231d-4e62-aa6e-f1ff817398ea).html


 1 

Doyne lecture 2016:  
 
Intraocular Health and the many faces of Inflammation 
 
Andrew D Dick 
 
UCL-Institute of Ophthalmology, London. 
Academic unit of Ophthalmology, School of Clinical Sciences, University of Bristol 
National Institute for Health Research (NIHR) Biomedical Research Centre at 
Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of 
Ophthalmology, London, United Kingdom. 
 
 
 
a.dick@ucl.ac.uk 
UCL Institute of Ophthalmology 
11-43 Bath Street 
London 
EC1V9EL 
  

mailto:a.dick@ucl.ac.uk


 2 

 
 
 
Abstract 
 
Dogma for reasons of immune privilege including sequestration (sic) of ocular 
antigen, lack of lymphatic and immune competent cells in the vital tissues of the 
eye has long evaporated. Maintaining tissue and cellular health to preserve 
vision requires active immune responses to prevent damage and respond to 
danger. A priori the eye must contain immune competent cells, undergo immune 
surveillance to ensure homeostasis as well as an ability to promote 
inflammation. By interrogating immune responses in non-infectious uveitis and 
compare with age-related macular degeneration (AMD), new concepts of 
intraocular immune health emerge. The role of macrophage polarisation in the 
two disorders is a tractable start. TNF–alpha regulation of macrophage 
responses in uveitis plays a pivotal role, supported via experimental evidence 
and validated by recent trial data. Contrast this with the slow; insidious 
degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic 
association with innate immunity and complement, highlights an ability to 
attenuate pathogenic immune responses and despite known inflammasome 
activation.  Yolk sac derived microglia maintain tissue immune health. The result 
of immune cell activation is environmentally dependent, for example on retinal 
cell bioenergetics status, autophagy and oxidative stress, alterations in which 
skew interaction between macrophages and retinal pigment epithelium (RPE). 
For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 
liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy 
or oxidative stress drives inflammasome activation, increases cytotoxicity and 
accentuation of neovascular responses, yet exogenous inflammasome derived 
cytokines such as IL-18 and IL-33 attenuate responses.  
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Introduction 
 
Keeping the peace. 
 
To maintain the viability of both a clear media and a functional neuroretina and 
vision requires an ability to maintain cellular health under stress and to various 
extents require an orchestration of an immune response (1-3).  
 
The eye and in particular the retina and the choroid, is furnished with a 
contiguous network of myeloid cells – namely microglia and macrophages (4, 5). 
These cells alongside the ascribed non-immune cells (such as RPE and Muller 
Glia in the retina) establish an immune tissue tone that maintains homeostasis. 
Myeloid cell activation in the retina is regulated by a tonic break functioning to 
prevent overt activation but maintain a scavenger function for daily 
housekeeping. The argument as to whether microglia contribute to onset of 
ocular inflammation (6)is balanced against their homeostatic role in maintaining 
a healthy retina, and where data is supportive (2). Microglia from a network 
throughout the retina, and display regulatory phenotypes and functions 
consistent with other tissue-resident macrophages elsewhere in the body (4). 
Furthermore, although we are still awaiting the advent of live in vivo imaging of 
immune cell trafficking to understand the dynamics and kinetics of cell 
trafficking and/or turnover, the results experimentally demonstrate a 
persistence of macrophages throughout disease (7, 8) and where myeloid, 
macrophage, and T cell accumulations are noted in later disease (9). The activity 
and extent of immune surveillance and cell traffic is yet to be determined in man.  
 
So one paradigm is that the retina possesses an activation threshold to subvert 
damage. One example of a tonic break that supports homeostasis is the 
regulation of macrophage activation via the cognate-receptor interplay of 
CD200R and its ligand, CD200. CD200 is ubiquitously expressed on macrophages, 
neurons and endothelium (10-13) and perturbing their interaction results in an 
aggressive disease phenotype (14, 15). If we attempt to reconstitute and de-
activate macrophage function (by direct ligation of CD200R with anti-CD200R 
monoclonal antibodies or by a CD200Fc), attenuation of retinal or CNS 
inflammation can be achieved (14, 16) as well as regulation of other myeloid 
cells including mast cells in the lung (17-20). 
 
How do we keep the peace? A premise lies that there is continual 
immunosurveillance, akin to CNS, and that alongside the immune cell inhabitants 
of the retina and choroid, together achieve constant sensing to respond to danger 
signals. In support, we observe that tissue damage in experimental retinal 
inflammation is significantly attenuated when macrophages are removed (21, 
22)or macrophage/monocyte activation is blocked (16, 23-25). Experimentally, 
we observe that the tissue is protected when TNF-alpha activity is neutralised 
(and indeed show the requisite requirement of TNF for macrophage activation in 
ocular inflammation (26-28)), or by reprogramming macrophage activation 
threshold with CD200R treatment. These consistent observations have led to a 
pipeline for therapeutic opportunities to redress activation thresholds of 
immune cells.  
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A tail of two conditions 
 
Understanding Uveitis. 
 
Uveitis is defined as an “orphan disease”, yet in 2010 uveitis accounted for 10% 
of the estimates of 285 million people visually impaired and 39 million blind 
(29). Non-infectious uveitis comprises a heterogeneous group of disorders 
diagnosed based on their clinical characteristics and whether associated with 
systemic disorders (30, 31).  
 
The healthcare burden is significant, where non-infectious uveitis accounts for 
substantial medical, social and workload costs in the USA and aligns with data 
that persistent disease gives rise to considerable ocular and systemic morbidity 
(24, 32-34). 
 
The clinical phenotype of non-infectious intraocular inflammation is replicated in 
experimental animal models that are driven by immune responses to self-
antigen (35). The animal models, such as experimental autoimmune 
uveoretinitis (EAU) support a role for autoimmunity with clinical-pathological 
features bearing remarkable similarity to man (7, 8, 36, 37).  The currently held 
notion is that of a CD4+ T helper cell-driven process and supported in man by the 
association of sympathetic ophthalmia and Vogt–Koyanagi–Harada disease with 
specific HLA class II alleles as well as the identification of ocular antigen-
responsive T cells in both the peripheral blood and eyes of patients (38-40).  
When T cells are activated they assume different functional phenotypes directed 
through canonical transcription factors (41, 42) and characterised by the 
secretion of signature cytokines (43, 44). In EAU, both Th1 and Th17 T helper 
cells are important inducers of autoimmune disease [(35, 45)]. It is the cytokines 
(especially IFN-γ produced by Th1 cells) produced by these cells that activate the 
non-specific mononuclear tissue infiltration (principally macrophages) and 
recruit neutrophils as seen in EAU (e.g., through IL-17 produced from Th17 cells; 
(7, 8, 23, 24, 26-28)).  
 
However, some of the uveitic conditions are likely to be driven through both 
autoinflammatory and autoimmune disease processes. Advances defining the 
molecular pathology of autoinflammatory conditions have illuminated how many 
inflammatory diseases are driven by genetic mutations affecting elements of the 
innate immune system (46). For example, in Blau syndrome, there is a gain-of-
function mutations in the NOD2 gene driving nuclear factor κB (NFκB) 
transcriptional activation (47) and gives rise to early onset inflammatory disease 
and in the skin there is an abundance of CD4+ T cells, CD68+ macrophages and 
extensive expression of IFN-γ, IL-17, and IL-6 (48). Uveitic conditions express 
changes in inflammasome activation, including Behcet’s and 
spondyloarthropathies. Also the complex interplay between changes in innate 
immunity, autoinflammation and autoimmunity implicates an infectious aetio-
pathogenesis. The inflammasome is a multiprotein complex comprising a sensor 
protein, the adaptor protein ASC (apoptosis-associated speck-like domain 
containing caspase recruitment domain), and the inflammatory protease 
caspase-1. The eye has many inflammasome-forming sensors (49), including 
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NLRP receptor molecules (nucleotide binding domain and leucine-rich repeat 
containing pyrin domain family). Inflammasome-dependent biological effects 
may be mediated not only by IL-1b and IL-18, but also by the multifaceted 
activities of caspase-1. Secondary effects of protecting against inflammasome 
activation, such as when autophagy is increased is observed and has relevance to 
degenerative disease or remodeling during persistent inflammatory diseases, 
such as uveitis (50, 51). The implications of which will be discussed later. It is 
clear, however that uveitis we observe as a result of autoimmune responses or 
through activation of cellular pathways linked to autoinflammatory disorders, 
namely activation of inflammasome, is an appropriate response to the signals 
received. That is, it is a sequel to an overwhelming adaptive T cell or innate 
PAMP-derived response to danger signals. This results in further recruitment of 
immune cells to the target tissue and these cells inflict the subsequent damage 
we observe clinically. However, control of responses of both innate and adaptive 
immunity are likely more intertwined. Adaptive responses and T cell 
polarization rely on both close interplay between intracellular complement 
regulation and NLRP3 assembly (52). 
 
The knowledge accrued from animal models of uveitis and in particular how to 
subvert tissue damage, has illuminated pivotal role for many targets.  The most 
successful to date is TNF-alpha (1, 53). Controlling the macrophage response is a 
principal effect of anti-TNF-a agents. The ability of macrophages to respond to 
environmental, cytokine, and receptor signals provides adaptability in 
controlling inflammation and in restoring structure and function (54). 
Translation will remain challenging (given the plasticity of myeloid cells and how 
rapidly they adapt) when considering timing of treatment. In EAU there are 
other compounding influences to consider for therapy and in particular whether 
such mechanisms exist for translation for AMD therapeutics. For example, 
complement is activated during disease; whilst arguably not critical to 
development of inflammation and suppressing or regulating complement 
diminishes EAU expression (55-57). A convergant mechanism of action is at the 
level of suppressing macrophage activation. Similarly, chemokine gradient 
support or perturbation can suppress or exacerbate EAU disease, where the 
myeloid compartments are being manipulated (58-62). 
 
For targeting TNF-alpha, we now have substantial evidence through randomised 
clinical trials exhibiting successful outcomes. The Abbvie sponsored VISUAL 
trials in adults have shown adalimumab (a humanized anti-TNFalpha 
monoclonal antibody) significantly lowered the risk for uveitic flare or vision 
loss in patients with non-infectious, intermediate, posterior or panuveitis upon 
complete prednisone taper in both active (uncontrolled despite 10-60 mg 
prednisone, VISUAL I) and inactive (corticosteroid-dependent on ≥10 mg 
prednisone, VISUAL II) uveitis. The enpoints were statistically significant in 
favour of adamimumab reducing the time to treatment failure (HR= 
 0.56 (0.40-0.76, P<0.001) for VISUAL I and HR=0.52 (0.37-0.74, P<0.001) for 
VISUAL II)(63). The safety profile was consistent with the known safety profile 
across the approved ADA indications and the patient population. In children, the 
SYCAMORE randomised placebo-controlled trial looking at effectivity and safety 
of adalimumab therapy in methrotrexate-resistent JIA-Uveitis provides evidence 
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of efficacy of adalimumab treatment used in addition to methotrexate. The final 
analysis of the primary outcome of time to treatment failure was showed a 
positive treatment effect in favour of adalimumab: hazard ratio (HR) 0.27 (95% 
CI 0.13-0.52); p<0.0001 (64).  
  
 
Age-related macular degeneration (AMD) and altered immunity 
 
AMD, as the leading cause of central visual loss affects the choriocapillaris, 
Bruch’s membrane and the retinal pigment epithelium, with dysfunction and 
death of overlying photoreceptors.  If we compare patients with ocular 
inflammatory disorders such as a uveitis that show alterations in the circulating 
immune system with AMD, we observe similar. Complement and innate immune 
gene polymorphisms have been clearly implicated in the development of AMD 
(65-67). While differences in complement regulation between those with the 
variant and the wild type alleles have been reported as well as the impact of rare 
variants in the rapidity of disease onset (68), functional immune mechanism 
remain elusive, particularly with respect to CFH. We have shown that CFH binds 
mCRP to dampen its proinflammatory activity. CFH from AMD patients carrying 
the "risk" His402 polymorphism display impaired binding to mCRP, and 
therefore proinflammatory effects of mCRP remain unrestrained, at least in vitro 
(69). Whether this translates to disease or not requires validation but even so 
alone does not account for all the immune related changes we observe in AMD. 
 
It is clear immune dysregulation exists and data continues to further illuminate 
the original notion (70). Drusen are immunologically active deposits containing 
oxidative lipids, lipofuscin, complement and other immune activating 
components that develop as the consequence of RPE stress and altered tissue 
homeostasis(70, 71). Degenerating RPE is also a major source for drusen 
components, indicating that age-related changes in RPE may be a causal factor 
and drive disease progession as we will discuss further(72).  For example, cells 
from eyes with AMD exhibit upregulated expression of immune receptors and 
molecules (73, 74), including expression of IL-17RC, a receptor for a dimer of IL-
17A and IL-17F and activation of NLRP-3 inflammasome that promotes cleavage 
of pro-IL-1beta and IL-18 (75-77).  Furthermore, both macrophages and 
multinucleated giant cells, mainly associated with vascular channels and breaks 
in Bruch’s membrane are evident (78-83). Macrophage subtype changes have 
been noted in the eyes of patients with AMD, including a change in the M1/M2 
ratio in AMD eyes compared to that in control eyes of the same age (83). With all 
the data demonstrating immune activation we need to reconcile these findings 
with the knowledge that the development of AMD is slow. Firstly, given that AMD 
is insidious, altered immune responses within the tissue likely occur as a result 
of persistent lifetime oxidative stress and changes to cell health in the retina.  In 
such conditions, a concept of para-inflammation emerges (3, 84), where evidence 
of activated immunity (complement, antibody deposition, macrophage and 
microglia activation) serves to protect the tissue and prevent overt inflammation 
and tissue destruction. Does this demonstrate the success of active immune 
regulation in the eye? Secondly, the inflection to a more rapid progression (if 
indeed that occurs) may be co-incident to the heightened inflammasome 
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activation. The consequence is a switch to a more ‘classical’ chronic 
inflammatory responses propagating tissue destruction and angiogenesis and as 
‘frame-shots’ of evidence in man supports (3, 85-87). The cause of change from 
para-inflammation to chronic inflammation remains unknown. We can however 
make in roads and unwrap possible mechanisms for AMD by comparing with 
immune mediated uveitis and the role of innate immunity and in particular 
macrophages. 
 
 
The altered faces of Macrophage activation  
 
Persistent ‘inflammation’, altered immunosurveillance and aberrant healing 
responses?  
 
Increasing evidence suggests there is persistent dysregulation of 
immunosurveillance of the retina following the induction of disease (7, 9, 37). If 
we take the notion that para-inflammation or any evidence of immune responses 
reflects active immune regulation, then it is possible that following the original 
insult or danger signal in inflammatory disease the tissue modifies or heightens 
immunosurveillance. The result may be predicted (not exclusively) to result in: 
(i) persistence of inflammatory cells and continued immune targeted 
destruction; (ii) persistent tissue remodelling and thus potential altered function 
as a result of for example, aberrant wound healing, and (iii) maintained 
architecture but residual increased numbers of inflammatory cells as a 
consequence of heightened thresholds (both activation threshold (see above) as 
well as ‘patrolling’ cell numbers) to maintain tissue integrity and health.   
 
Talking this further and in support of points (ii) and (iii) above, a principal 
observation in inflammatory disease such as murine EAU is the persistence of 
inflammation, implying that the threshold of myeloid activation is not reset. It is 
in this context that para-inflammation’ is operative or as said above, another way 
of describing this phenomenon are immune responses to protect tissue – 
heightened immunosurveillance with or without tissue remodelling. In the 
presence of persistent T cell responses, the tissue remains vulnerable. A constant 
macrophage infiltrate remains, although in nearly all models the macrophages 
exhibit an alternative activation phenotype in later stages (as opposed to the 
early disease classical activation phenotype) and this again supports concept of 
tissue remodelling. Taken together, a consequence of a chronic immune cell 
infiltrate is persistent tissue remodelling contemporaneous with 
macrophage/monocyte activation, of which one hallmark result is angiogenesis. 
The angiogenic response during persistent tissue immune, cell infiltrate requires 
an operative CCL2-CCR2 axis, but is also influenced by multifunctional matrix 
proteins, such as thrombospondin-1 (TSP-1) (9).  Subverting the angiogenic 
response (but without altering the initial inflammation and antigen-specific 
targeting of tissue) by knocking out matricellular proteins such as TSP-1 results 
as expected persistent disease (as observed in wild-type mice (88)) but notably 
results in increased angiogenesis (a detriment to retinal function as observed in 
neovascular diseases AMD). The results infer that there is matricellular control 
(e.g.TSP) of macrophage activation in terms of remodelling and angiogenesis 
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during T cell mediated responses and whilst initial disease severity is not altered 
with loss of TSP, regulating tissue remodelling, (as determined by extent of 
angiogenesis) is perturbed.  
  
 
 
Macrophage conditioning, angiogenesis and tissue viability. 
 
 
As introduced above, the function and phenotype of macrophage subtypes is 
conditioned by signals encountered within the tissue microenvironment.  The 
paradigm of M1 and M2 macrophages has been studied with respect to 
angiogenesis (89-92). Classical activation generates M1 macrophages, which 
have pro-inflammatory functions as we have discussed, operative during 
inflammation in EAU and impart tissue destruction that is effectively neutralized 
via blocking TNF-alpha activity. Alternatively activated M2 macrophages confer 
responses related to wound healing, and are capable of generating VEGF and 
promoting angiogenesis. However, pathological angiogenesis is observed most 
commonly in the presence of M2 macrophages (93). The role of macrophages in 
driving a VEGF-dependent angiogenic response remains debatable. Data 
supported by recent evidence from studies using the laser-induced CNV model 
show that early initiation of choroidal angiogenesis is dependent upon 
macrophage phagocytosis of damaged RPE components. This in turn elicits an 
Arg-1+, VEGF+ M2 phenotype that is only seen early in the genesis of the 
angiogenic bed (94). Contrary, in an attempt to understand VEGF and upstream 
players using the mouse CNV models with various conditional inactivation of 
Vegfa, Hif1a, or Epas1, macrophages were not the source of VEGF (95).  
 
But yet on the other hand, macrophage subtypes are plastic, and functional 
outcomes may not be straightforward. For example, IFN- and TLR4 ligation 
(with LPS) can generate VEGF+ M1 macrophages, but PGE2 remains a potent 
stimulus for the generation VEGF+ M2 macrophages as well, in vitro. So when 
macrophages are alternatively activated via IL-4 they result in a sFlt-1-secreting 
M2 cell and this is seen in both mouse and man (96). In man, macrophages 
associated with CNV or in specimens of AMD retina that are assessed using 
immunohistochemistry confirm the nature of VEGF-expressing CD68+ cells (97). 
Finally, perturbing macrophage function can attenuate neovascularization in 
experimental models (98). 
 
What causes an inflection in immune responses that may drive conversion from 
early AMD to late stage of AMD?  One switch as we discussed above is that of the 
change from a homeostatic para-inflammatory response, which may become 
increasingly operative with age, to an unchecked persistent low grade 
inflammatory response resulting in loss of RPE and/or pathological 
angiogenesis(3). We have recently demonstrated that RPE destruction in the 
model of laser-induced CNV polarizes infiltrating myeloid cells toward a pro-
angiogenic phenotype.  The latter can be perturbed through the augmentation of 
inhibitory CD200R signaling or through the administration of Th2 cytokines to 
either tonically suppress macrophage activation or drive anti-angiogenic 
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function respectively(94, 96, 98).  Thus our data and those from others(99, 100) 
support the concept that interplay between macrophage and RPE within the 
subretinal space likely contributes to disease progression. 
 
Autophagy is the central cellular housekeeping function that facilitates the 
disposal of long-lived, defective organelles (eg. mitochondria) and protein 
aggregates through “self-eating” via autophagosomes and lysosomes(101). 
Increasing evidence indicates impaired autophagy is associated with age-related 
degenerative disorders, highlighted by studies in which pharmacological or 
genetic manipulation of autophagy pathways can induce cellular and tissue 
degeneration in vitro and in vivo(102-104). In the eye, autophagy is highly active 
in RPE and photoreceptor cells, and impaired autophagy in RPE leads to RPE 
transcytosis and exocytosis and early signs of RPE degeneration(104-106). 
Impaired autophagy generates dysfunctional RPE that modulates macrophage 
responses, driving further cell death and promotes angiogenesis in the eye(107). 
There is therefore a growing body of evidence to support interaction between 
RPE degeneration and subsequent macrophage activation that may simulate 
earlier events occurring in AMD leading to progression of disease and 
neovascularisation.  
 
Moreover, the activation of the NLRP3 inflammasome (that is almost certainly a 
protective response initially), provides a rapid response to danger in order to 
preserve tissue function and integrity. The corollary is that inflammasome 
activation may also cause tissue damage. NLRP3-inflammasome can 'sense' 
drusen isolated from human AMD donor eyes that liberates active IL-1β and 
Interleukin (IL)-18 production. IL-18 however has been shown to protect against 
the development of choroidal neovascularization (108).  Another family member, 
and in a similar vain is IL-33. IL-33 is unique as it is active without caspase-1 
cleavage and does not require inflammasome activation for secretion and 
bioactivity (109).  IL-33 triggers an inflammatory response, recruiting 
monocytes, contributing to photoreceptor loss in a photoxic retinal model of 
degeneration (110) and infers a pathogenic role of endogenous IL-33 and an a 
priori for neutralizing IL-33 to reduce myeloid cell accumulation as a possible 
intervention. However, as with IL-18, and in consideration of the emerging role 
of IL-33 in inflammatory disorders (111, 112) and in the absence of progressive 
cell death, IL-33 regulates tissue responses. IL-33 subverts angiogenesis, via 
direct inhibition of fibroblasts and endothelial cells that express high levels of 
ST2, and recombinant IL-33 protects against CNV development (113).  
 
 
Ageing, Senescence and bioenergetic sources 
 
O’Neill highlighted the prominence to the ‘Warburg effect’ in context to immune 
responses and the role in the pathogenesis of immune mediated disorders, such 
as diabetes and atherosclerosis (114-116). Extrapolating from Warburg’s 
original observations that tumour cells undergo a bioenergetic switch 
(permissive for survival and proliferation), to aerobic glycolysis, we now 
appreciate that such bioenergetic switch occurs in the ageing and early AMD 
RPE. The Warburg effect rapidly provides ATP and enhances metabolic pathways 
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to support immune cell function. With age, there is increasing strain on 
mitochondrial function, autophagy and mitophagy to maintain cellular and tissue 
health. A response for the good is to divert energy sources – Warburg effect - to 
maintain function against the stress, allow an ability to proliferate if required, 
and respond to the oxygen drain by upregulating transcription factor HIF-1.  
However, with that also comes a price; inflammasome activation. 
 
Any cell with mitotic potential may undergo senescence (often associated with 
ageing), resulting in cell cycle arrest but also a cell with a high metabolic demand 
and with respect to inflammation a distinct secretory phenotype that promotes 
inflammation (117). The senescent associated secretory phenotype provokes 
further immune mediated deleterious effects on the local tissue 
microenvironment.  Senescence also evokes an anti-Warburg effect. All told, 
senescence may be a drive of immune-mediated degenerative disorders, such as 
AMD. 
 
In degenerative disease the Warburg effect may be beneficial. The upregulation 
of the inflammasome may act to protect cells and subvert angiogenesis as shown 
with IL-18 and IL-33. Such a response, and where we observe inflammation is 
one of the constituents of the para-inflammatory response we discussed earlier. 
Parainflammation works to enable and reset immune thresholds to protect the 
tissue.  
 
The Immune response work group at the annual Beckman Initiative for Macular 
Research conference concluded in 2014 with a provocation and notion that AMD 
is an inflammatory disease, more permissive with age due to an interaction of an 
aged systemic immune system with an aged or senescent eye. Immune activation 
that protects and any dysegulation that promotes damage is orchestrated 
through a playlist of many of the same players, and not exhaustively, altered 
intracellular lipid handling, Warburg effect, inflammasome activation and 
macrophage activation. However, as discussed here, the outcome is dependent 
on other interactions and external forces, such as the many associations we 
appreciate with complement protein polymorphisms that will dictate altered cell 
responses as well as the insidious and persistent influence of oxidative stress 
and senescence.  
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