470 research outputs found

    Implications of differences between recent anthropogenic aerosol emission inventories for diagnosed AOD and radiative forcing from 1990 to 2019

    Get PDF
    This study focuses on implications of differences between recent global emissions inventories for simulated trends in anthropogenic aerosol abundances and radiative forcing (RF) over the 1990–2019 period. We use the ECLIPSE version 6 (ECLv6) and CEDS year 2021 release (CEDS21) as input to the chemical transport model OsloCTM3 and compare the resulting aerosol evolution to corresponding results derived with the first CEDS release, as well as to observed trends in regional and global aerosol optical depth (AOD). Using CEDS21 and ECLv6 results in a 3 % and 6 % lower global mean AOD compared to CEDS in 2014, primarily driven by differences over China and India, where the area average AOD is up to 30 % lower. These differences are considerably larger than the satellite-derived interannual variability in AOD. A negative linear trend over 2005–2017 in global AOD following changes in anthropogenic emissions is found with all three inventories but is markedly stronger with CEDS21 and ECLv6. Furthermore, we confirm that the model better captures the sign and strength of the observed AOD trend over China with CEDS21 and ECLv6 compared to using CEDS, while the opposite is the case for South Asia. We estimate a net global mean aerosol-induced RF in 2014 relative to 1990 of 0.08 W m−2 for CEDS21 and 0.12 W m−2 for ECLv6, compared to 0.03 W m−2 with CEDS. Using CEDS21, we also estimate the RF in 2019 relative to 1990 to be 0.10 W m−2, reflecting the continuing decreasing trend in aerosol loads post-2014. Our results facilitate more rigorous comparison between existing and upcoming studies of climate and health effects of aerosols using different emission inventories.</p

    Hospital treatment -is it affordable? A structured cost analysis of vaginal deliveries and planned caesarean sections

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The analysis of cost effectiveness in hospitals is as difficult as treating the patients properly. We are yet not able to answer the simple question of what costs are caused by a certain diagnosis and its treatment during an average hospital stay.</p> <p>Methods</p> <p>To answer some issues of the global problem of cost effectiveness during hospitalisation, we analysed the costs and the cost structure of a normal obstetrical hospital stay during an uncomplicated vaginal delivery and a planned caesarean section. Cost data was collected and summarized from the patients file, the hospital's computer system gathering all cost centres, known material expenses and expenses of non obstetrical medical services.</p> <p>Results</p> <p>For vaginal deliveries/planned caesareans we can calculate with a surplus of about 83 €/1432 €. About 45% of the summarized costs are calculated on a reliable database.</p> <p>Discussion</p> <p>The introduction of the DRG based clearing system in Germany has aggravated the discussion on cost effectiveness. Our meticulous work-up of expenses excluded personal precautionary costs and personnel costs of documentation because no tools are described to depict such costs. If we would add these costs to the known expenses of our study, we strongly suspect that hospital treatment of vaginal deliveries or planned caesarean sections is not cost effective.</p

    Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data

    Get PDF
    Inferred effective climate sensitivity (ECSinf) is estimated using a method combining radiative forcing (RF) time series and several series of observed ocean heat content (OHC) and near-surface temperature change in a Bayesian framework using a simple energy balance model and a stochastic model. The model is updated compared to our previous analysis by using recent forcing estimates from IPCC, including OHC data for the deep ocean, and extending the time series to 2014. In our main analysis, the mean value of the estimated ECSinf is 2.0 °C, with a median value of 1.9 °C and a 90 % credible interval (CI) of 1.2–3.1 °C. The mean estimate has recently been shown to be consistent with the higher values for the equilibrium climate sensitivity estimated by climate models. The transient climate response (TCR) is estimated to have a mean value of 1.4 °C (90 % CI 0.9–2.0 °C), and in our main analysis the posterior aerosol effective radiative forcing is similar to the range provided by the IPCC. We show a strong sensitivity of the estimated ECSinf to the choice of a priori RF time series, excluding pre-1950 data and the treatment of OHC data. Sensitivity analysis performed by merging the upper (0–700 m) and the deep-ocean OHC or using only one OHC dataset (instead of four in the main analysis) both give an enhancement of the mean ECSinf by about 50 % from our best estimate

    Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory

    Get PDF
    We document the ability of the new-generation Oslo chemistry-transport model, Oslo CTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014.Overall, Oslo CTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The treatment of black carbon (BC) scavenging in Oslo CTM3 gives better agreement with observed vertical BC profiles relative to the predecessor Oslo CTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution, and scavenging affect the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration.Using CEDS, we estimate a net RFari in 2014 relative to 1750 of −0.17&thinsp;W&thinsp;m−2, significantly weaker than the IPCC AR5 2011–1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes.</p

    Food processing and cancer risk in Europe: results from the prospective EPIC cohort study

    Get PDF
    Background Food processing has been hypothesised to play a role in cancer development; however, data from large-scale epidemiological studies are scarce. This study investigated the association between dietary intake according to amount of food processing and risk of cancer at 25 anatomical sites using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Methods This study used data from the prospective EPIC cohort study, which recruited participants between March 18, 1991, and July 2, 2001, from 23 centres in ten European countries. Participant eligibility within each cohort was based on geographical or administrative boundaries. Participants were excluded if they had a cancer diagnosis before recruitment, had missing information for the NOVA food processing classification, or were within the top and bottom 1% for ratio of energy intake to energy requirement. Validated dietary questionnaires were used to obtain information on food and drink consumption. Participants with cancer were identified using cancer registries or during follow-up from a combination of sources, including cancer and pathology centres, health insurance records, and active follow-up of participants. We performed a substitution analysis to assess the effect of replacing 10% of processed foods and ultra-processed foods with 10% of minimally processed foods on cancer risk at 25 anatomical sites using Cox proportional hazard models. Findings 521 324 participants were recruited into EPIC, and 450 111 were included in this analysis (318 686 [70·8%] participants were female individuals and 131 425 [29·2%] were male individuals). In a multivariate model adjusted for sex, smoking, education, physical activity, height, and diabetes, a substitution of 10% of processed foods with an equal amount of minimally processed foods was associated with reduced risk of overall cancer (hazard ratio 0·96, 95% CI 0·95–0·97), head and neck cancers (0·80, 0·75–0·85), oesophageal squamous cell carcinoma (0·57, 0·51–0·64), colon cancer (0·88, 0·85–0·92), rectal cancer (0·90, 0·85–0·94), hepatocellular carcinoma (0·77, 0·68–0·87), and postmenopausal breast cancer (0·93, 0·90–0·97). The substitution of 10% of ultra-processed foods with 10% of minimally processed foods was associated with a reduced risk of head and neck cancers (0·80, 0·74–0·88), colon cancer (0·93, 0·89–0·97), and hepatocellular carcinoma (0·73, 0·62–0·86). Most of these associations remained significant when models were additionally adjusted for BMI, alcohol and dietary intake, and quality. Interpretation This study suggests that the replacement of processed and ultra-processed foods and drinks with an equal amount of minimally processed foods might reduce the risk of various cancer types. Funding Cancer Research UK, l'Institut National du Cancer, and World Cancer Research Fund International
    • …
    corecore