201 research outputs found

    Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data

    Get PDF
    Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events

    Modelling group movement with behaviour switching in continuous time

    Get PDF
    This article presents a new method for modelling collective movement in continuous time with behavioural switching, motivated by simultaneous tracking of wild or semi‐domesticated animals. Each individual in the group is at times attracted to a unobserved leading point. However, the behavioural state of each individual can switch between ‘following’ and ‘independent’. The ‘following’ movement is modelled through a linear stochastic differential equation, while the ‘independent’ movement is modelled as Brownian motion. The movement of the leading point is modelled either as an Ornstein‐Uhlenbeck (OU) process or as Brownian motion (BM), which makes the whole system a higher‐dimensional Ornstein‐Uhlenbeck process, possibly an intrinsic non‐stationary version. An inhomogeneous Kalman filter Markov chain Monte Carlo algorithm is developed to estimate the diffusion and switching parameters and the behaviour states of each individual at a given time point. The method successfully recovers the true behavioural states in simulated data sets , and is also applied to model a group of simultaneously tracked reindeer (Rangifer tarandus)

    Prophylactic cranial irradiation in locally advanced non-small cell lung cancer: outcome of recursive partitioning analysis group 1 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prophylactic cranial irradiation (PCI) has been demonstrated to reduce or delay the incidence of brain metastases (BM) in locally advanced non-small cell lung carcinoma (LA-NSCLC) patients with various prognostic groups. With this current cohort we planned to evaluate the potential usefulness of prophylactic cranial irradiation (PCI) specifically in recursive partitioning analysis (RPA) Group 1, which is the most favorable group of LA-NSCLC patients.</p> <p>Methods</p> <p>Between March 2007 and February 2008, 62 patients in RPA group 1 were treated with sequential chemoradiotherapy and PCI for stage IIIB NSCLC. The induction chemotherapy consisted of 3 courses of cisplatin (80 mg/m<sup>2</sup>) and docetaxel (80 mg/m<sup>2</sup>); each course was given every 21 days. Thoracic radiotherapy (TRT) was given at a dose of 60 Gy using 3-D conformal planning. All patients received a total dose of 30 Gy PCI (2 Gy/fr, 5 days a week), beginning on the first day of the TRT. Then, all patients received 3 further courses of the same chemotherapy protocol.</p> <p>Results</p> <p>Six (9.7%) patients developed brain metastases during their clinical course. Only one (2%) patient developed brain metastasis as the site of first treatment failure. Median brain metastasis-free survival, overall survival, and progression free survival were 16.6, 16.7, and 13.0 months, respectively. By univariate analysis, rates of BM were significantly higher in patients younger than 60 years of age (p = 0.03). Multivariate analysis showed no significant difference in BM-free survival according to gender, age, histology, and initial T- and N-stage.</p> <p>Conclusion</p> <p>The current finding of almost equal bone metastasis free survival and overall survival in patients with LA-NSCLC in RPA group 1 suggests a longer survival for patients who receive PCI, and thereby have a reduced risk of BM.</p

    Pre-operative chemotherapy in early stage resectable non-small-cell lung cancer: a randomized feasibility study justifying a multicentre phase III trial

    Get PDF
    Surgical resection offers the best chance for cure for early stage non-small-cell lung cancer (NSCLC, stage I, II, IIIA), but the 5-year survival rates are only moderate, with systemic relapse being the major cause of death. Pre-operative (neo-adjuvant) chemotherapy has shown promise in small trials restricted to stage IIIA patients. We believe similar trials are now appropriate in all stages of operable lung cancer. A feasibility study was performed in 22 patients with early stage (IB, II, IIIA) resectable NSCLC; randomized to either three cycles of chemotherapy [mitomycin-C 8 mg m−2, vinblastine 6 mg m−2 and cisplatin 50 mg m−2 (MVP)] followed by surgery (n = 11), or to surgery alone. Of 40 eligible patients, 22 agreed to participate (feasibility 55%) and all complied with the full treatment schedule. All symptomatic patients achieved either complete (50%) or partial (50%) relief of tumour-related symptoms with pre-operative chemotherapy. Fifty-five per cent achieved objective tumour response, and a further 27% minor tumour shrinkage; none had progressive disease. Partial pathological response was seen in 50%. No severe (WHO grade III–IV) toxicities occurred. No significant deterioration in quality of life was detected during chemotherapy. Pre-operative MVP chemotherapy is feasible in early stage NSCLC, and this study has now been initiated as a UK-wide Medical Research Council phase III trial. © 1999 Cancer Research Campaig

    Herbivore diversity effects on Arctic tundra ecosystems: a systematic review

    Get PDF
    Background: Northern ecosystems are strongly influenced by herbivores that differ in their impacts on the ecosystem. Yet the role of herbivore diversity in shaping the structure and functioning of tundra ecosystems has been overlooked. With climate and land-use changes causing rapid shifts in Arctic species assemblages, a better understanding of the consequences of herbivore diversity changes for tundra ecosystem functioning is urgently needed. This systematic review synthesizes available evidence on the effects of herbivore diversity on different processes, functions, and properties of tundra ecosystems. Methods: Following a published protocol, our systematic review combined primary field studies retrieved from bibliographic databases, search engines and specialist websites that compared tundra ecosystem responses to different levels of vertebrate and invertebrate herbivore diversity. We used the number of functional groups of herbivores (i.e., functional group richness) as a measure of the diversity of the herbivore assemblage. We screened titles, abstracts, and full texts of studies using pre-defined eligibility criteria. We critically appraised the validity of the studies, tested the influence of different moderators, and conducted sensitivity analyses. Quantitative synthesis (i.e., calculation of effect sizes) was performed for ecosystem responses reported by at least five articles and meta-regressions including the effects of potential modifiers for those reported by at least 10 articles. Review findings: The literature searches retrieved 5944 articles. After screening titles, abstracts, and full texts, 201 articles including 3713 studies (i.e., individual comparisons) were deemed relevant for the systematic review, with 2844 of these studies included in quantitative syntheses. The available evidence base on the effects of herbivore diversity on tundra ecosystems is concentrated around well-established research locations and focuses mainly on the impacts of vertebrate herbivores on vegetation. Overall, greater herbivore diversity led to increased abundance of feeding marks by herbivores and soil temperature, and to reduced total abundance of plants, graminoids, forbs, and litter, plant leaf size, plant height, and moss depth, but the effects of herbivore diversity were difficult to tease apart from those of excluding vertebrate herbivores. The effects of different functional groups of herbivores on graminoid and lichen abundance compensated each other, leading to no net effects when herbivore effects were combined. In turn, smaller herbivores and large-bodied herbivores only reduced plant height when occurring together but not when occurring separately. Greater herbivore diversity increased plant diversity in graminoid tundra but not in other habitat types. Conclusions: This systematic review underscores the importance of herbivore diversity in shaping the structure and function of Arctic ecosystems, with different functional groups of herbivores exerting additive or compensatory effects that can be modulated by environmental conditions. Still, many challenges remain to fully understand the complex impacts of herbivore diversity on tundra ecosystems. Future studies should explicitly address the role of herbivore diversity beyond presence-absence, targeting a broader range of ecosystem responses and explicitly including invertebrate herbivores. A better understanding of the role of herbivore diversity will enhance our ability to predict whether and where shifts in herbivore assemblages might mitigate or further amplify the impacts of environmental change on Arctic ecosystems

    Burden of childhood-onset arthritis

    Get PDF
    Juvenile arthritis comprises a variety of chronic inflammatory diseases causing erosive arthritis in children, often progressing to disability. These children experience functional impairment due to joint and back pain, heel pain, swelling of joints and morning stiffness, contractures, pain, and anterior uveitis leading to blindness. As children who have juvenile arthritis reach adulthood, they face possible continuing disease activity, medication-associated morbidity, and life-long disability and risk for emotional and social dysfunction. In this article we will review the burden of juvenile arthritis for the patient and society and focus on the following areas: patient disability; visual outcome; other medical complications; physical activity; impact on HRQOL; emotional impact; pain and coping; ambulatory visits, hospitalizations and mortality; economic impact; burden on caregivers; transition issues; educational occupational outcomes, and sexuality

    Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs

    Get PDF
    Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top-down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography-mass spectrometry (LC-MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations. We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence. We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation

    Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs

    Get PDF
    Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top-down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography-mass spectrometry (LC-MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations. We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence. We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation.Peer reviewe

    Animal Botulism Outcomes in the AniBioThreat Project

    Get PDF
    Botulism disease in both humans and animals is a worldwide concern. Botulinum neurotoxins produced by Clostridium botulinum and other Clostridium species are the most potent biological substances known and are responsible for flaccid paralysis leading to a high mortality rate. Clostridium botulinum and botulinum neurotoxins are considered potential weapons for bioterrorism and have been included in the Australia Group List of Biological Agents. In 2010 the European Commission (DG Justice, Freedom and Security) funded a 3-year project named AniBioThreat to improve the EU's capacity to counter animal bioterrorism threats. A detection portfolio with screening methods for botulism agents and incidents was needed to improve tracking and tracing of accidental and deliberate contamination of the feed and food chain with botulinum neurotoxins and other Clostridia. The complexity of this threat required acquiring new genetic information to better understand the diversity of these Clostridia and develop detection methods targeting both highly specific genetic markers of these Clostridia and the neurotoxins they are able to produce. Several European institutes participating in the AniBioThreat project collaborated on this program to achieve these objectives. Their scientific developments are discussed here
    corecore