10 research outputs found

    Translating Evidence-Based Policy to Practice: A Multilevel Partnership Using the Interactive Systems Framework

    Get PDF
    This is the published version, made available with the permission of the publisher.Despite increases in federal allocations, little is known about how to ensure successful implementation of evidence-based programs. This descriptive case study using the Interactive Systems Framework for Dissemination and Implementation illustrates the Prevention Support System (PSS) implemented for one federal evidence-based policy initiative. Exploring perspectives of intermediary organizations, the article describes the impetus for promoting evidence-based programming, multilevel systemic change, and the collaborations to develop strategic partnerships between national and state entities. Two early adopters, Kansas and Nebraska, illustrate the general capacity-building technical assistance activities conducted to build a multilevel PSS. The article concludes with outcomes, lessons learned, and recommendations for building stronger implementation capacity

    Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma

    No full text
    A compact clinically compatible fluorescence lifetime imaging microscopy (FLIM) system was designed and built for intraoperative disease diagnosis and validated in vivo in a hamster oral carcinogenesis model. This apparatus allows for the remote image collection via a flexible imaging probe consisting of a gradient index objective lens and a fiber bundle. Tissue autofluorescence (337 nm excitation) was imaged using an intensified CCD with a gate width down to 0.2 ns. We demonstrate a significant contrast in fluorescence lifetime between tumor (1.77±0.26 ns) and normal (2.50±0.36 ns) tissues at 450 nm and an over 80% intensity decrease at 390 nm emission in tumor versus normal areas. The time-resolved images were minimally affected by tissue morphology, endogenous absorbers, and illumination. These results demonstrate the potential of FLIM as an intraoperative diagnostic technique

    The NIH Somatic Cell Genome Editing program.

    No full text
    The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium\u27s plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions

    Quality of life after breast-conserving therapy and adjuvant radiotherapy for non-low-risk ductal carcinoma in situ (BIG 3-07/TROG 07.01): 2-year results of a randomised, controlled, phase 3 trial

    No full text
    BackgroundBIG 3-07/TROG 07.01 is an international, multicentre, randomised, controlled, phase 3 trial evaluating tumour bed boost and hypofractionation in patients with non-low-risk ductal carcinoma in situ following breast-conserving surgery and whole breast radiotherapy. Here, we report the effects of diagnosis and treatment on health-related quality of life (HRQOL) at 2 years.MethodsThe BIG 3-07/TROG 07.01 trial is ongoing at 118 hospitals in 11 countries. Women aged 18 years or older with completely excised non-low-risk ductal carcinoma in situ were randomly assigned, by use of a minimisation algorithm, to tumour bed boost or no tumour bed boost, following conventional whole breast radiotherapy or hypofractionated whole breast radiotherapy using one of three randomisation categories. Category A was a 4-arm randomisation of tumour bed boost versus no boost following conventional whole breast radiotherapy (50 Gy in 25 fractions over 5 weeks) versus hypofractionated whole breast radiotherapy (42·5 Gy in 16 fractions over 3·5 weeks). Category B was a 2-arm randomisation between tumour bed boost versus no boost following conventional whole breast radiotherapy, and category C was a 2-arm randomisation between tumour bed boost versus no boost following hypofractionated whole breast radiotherapy. Stratification factors were age at diagnosis, planned endocrine therapy, and treating centre. The primary endpoint, time to local recurrence, will be reported when participants have completed 5 years of follow-up. The HRQOL statistical analysis plan prespecified eight aspects of HRQOL, assessed by four questionnaires at baseline, end of treatment, and at 6, 12, and 24 months after radiotherapy: fatigue and physical functioning (EORTC QLQ-C30); cosmetic status, breast-specific symptoms, arm and shoulder functional status (Breast Cancer Treatment Outcome Scale); body image and sexuality (Body Image Scale); and perceived risk of invasive breast cancer (Cancer Worry Scale and a study-specific question). For each of these measures, tumour bed boost was compared with no boost, and conventional whole breast radiotherapy compared with hypofractionated whole breast radiotherapy, by use of generalised estimating equation models. Analyses were by intention to treat, with Hochberg adjustment for multiple testing. This trial is registered with ClinicalTrials.gov, NCT00470236.FindingsBetween June 1, 2007, and Aug 14, 2013, 1208 women were enrolled and randomly assigned to receive no tumour bed boost (n=605) or tumour bed boost (n=603). 396 of 1208 women were assigned to category A: conventional whole breast radiotherapy with tumour bed boost (n=100) or no boost (n=98), or to hypofractionated whole breast radiotherapy with tumour bed boost (n=98) or no boost (n=100). 447 were assigned to category B: conventional whole breast radiotherapy with tumour bed boost (n=223) or no boost (n=224). 365 were assigned to category C: hypofractionated whole breast radiotherapy with tumour bed boost (n=182) or no boost (n=183). All patients were followed up at 2 years for the HRQOL analysis. 1098 (91%) of 1208 patients received their allocated treatment, and most completed their scheduled HRQOL assessments (1147 [95%] of 1208 at baseline; 988 [87%] of 1141 at 2 years). Cosmetic status was worse with tumour bed boost than with no boost across all timepoints (difference 0·10 [95% CI 0·05–0·15], global p=0·00014, Hochberg-adjusted p=0·0016); at the end of treatment, the estimated difference between tumour bed boost and no boost was 0·13 (95% CI 0·06–0·20; p=0·00021), persisting at 24 months (0·13 [0·06–0·20]; p=0·00021). Arm and shoulder function was also adversely affected by tumour bed boost across all timepoints (0·08 [95% CI 0·03–0·13], global p=0·0033, Hochberg adjusted p=0·045); the difference between tumour bed boost and no boost at the end of treatment was 0·08 (0·01 to 0·15, p=0·021), and did not persist at 24 months (0·04 [–0·03 to 0·11], p=0·29). None of the other six prespecified aspects of HRQOL differed significantly after adjustment for multiple testing. Conventional whole breast radiotherapy was associated with worse body image than hypofractionated whole breast radiotherapy at the end of treatment (difference –1·10 [95% CI –1·79 to –0·42], p=0·0016). No significant differences were reported in the other PROs between conventional whole breast radiotherapy compared with hypofractionated whole breast radiotherapy.InterpretationTumour bed boost was associated with persistent adverse effects on cosmetic status and arm and shoulder functional status, which might inform shared decision making while local recurrence analysis is pending
    corecore