171 research outputs found

    Solvatipn of excess electrons in supercritical ammonia

    Get PDF
    Solvation of excess electrons in supercritical ammonia along the T = 450 K isotherm was investigated. Equilibrium aspects of solvation were analyzed using combined path integral-molecular dynamics techniques. Observations showed transition from localized to quasifree states at approximately one fourth of the triple point density.Fil:Rodriguez, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Laria, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Solvatipn Of Excess Electrons In Supercritical Ammonia

    Get PDF
    Solvation of excess electrons in supercritical ammonia along the T = 450 K isotherm was investigated. Equilibrium aspects of solvation were analyzed using combined path integral-molecular dynamics techniques. Observations showed transition from localized to quasifree states at approximately one fourth of the triple point density.1191260446052Innovations in Supercritical Fluids, Science, and Technology (1995) ACS Symposium Series, 608. , edited by K. W. Hutchenson and N. R. Foster (American Chemical Society, Washington, D.C.)Me Hugh, M.A., Krukonis, V.J., (1986) Supercritical Fluid Extraction: Principles and Practice, , Butterworths, BostonKim, S., Johnston, K.P., (1987) ACS Symposium Series, 329. , Supercritical Fluids, Chemical, and Engineering Principles and Applications, edited by T. G. Squires and M. E. Paulatis (American Chemical Society, Washington, D.C.)Kim, S., Johnston, K.P., (1987) Ind. Eng. Chem. Res., 26, p. 1206Bennet, G.E., Johnston, K.P., (1994) J. Phys. Chem., 98, p. 441Peck, D.G., Mehta, A.J., Johnston, K.P., (1989) J. Phys. Chem., 93, p. 4297Johnston, K.P., Haynes, C., (1987) AIChE J., 33, p. 2017Giraud, V., Krebs, P., (1982) Chem. Phys. Lett., 86, p. 85Krebs, P., Hientze, M., (1982) J. Chem. Phys., 76, p. 5484Jou, F.-Y., Freeman, G.R., (1981) J. Phys. Chem., 85, p. 629Olinger, R., Schinderwolf, U., Gaathon, A., Jortner, J., (1971) Ber. Bunsenges. Phys. Chem., 75, p. 690Olinger, R., Hahne, S., Schinderwolf, U., (1972) Ber. Bunsenges. Phys. Chem., 76, p. 349Migus, A., Gaudel, Y., Martin, J.L., Antonetti, A., (1987) Phys. Rev. Lett., 58, p. 1559Long, F.H., Lu, H., Shi, X., Eisenthal, K.B., (1991) Chem. Phys. Lett., 185, p. 47Alfano, J.C., Walhout, P.K., Kimura, Y., Barbara, P.F., (1993) J. Chem. Phys., 98, p. 5996Kimura, Y., Alfano, J.C., Walhout, P.K., Barbara, P.F., (1994) J. Phys. Chem., 98, p. 3450Jahnke, J.A., Meyer, L., Rice, S.A., (1971) Phys. Rev. A, 3, p. 734Huang, S.S.S., Freeman, G.R., (1978) J. Chem. Phys., 68, p. 1355Floriane, M.A., Freeman, G.R., (1986) J. Chem. Phys., 85, p. 1603Coker, D.F., Berne, B.J., Thirumalai, D., (1987) J. Chem. Phys., 86, p. 5689Laria, D., Chandler, D., (1987) J. Chem. Phys., 87, p. 4088Space, B., Coker, D.F., Liu, Z.H., Berne, B.J., Martyna, G., (1992) J. Chem. Phys., 97, p. 2002Plenkiewicz, B., Frongillo, Y., Lopez-Castillo, J.-M., Jay-Gerin, J.-P., (1996) J. Chem. Phys., 104, p. 9053Lopez-Castillo, J.-M., Frongillo, Y., Plenkiewicz, B., Jay-Gerin, J.-P., (1992) J. Chem. Phys., 96, p. 9092Krebs, P., (1980) Chem. Phys. Lett., 70, p. 465Krebs, P., Giraud, V., Wantschick, M., (1980) Phys. Rev. Lett., 44, p. 211Sprik, M., Impey, R.W., Klein, M.L., (1985) J. Chem. Phys., 83, p. 5802Sprik, M., Klein, M.L., (1987) J. Chem. Phys., 87, p. 5987Sprik, M., Klein, M.L., (1988) J. Chem. Phys., 89, p. 1592Sprik, M., Klein, M.L., (1989) J. Chem. Phys., 91, p. 5665Marchi, M., Sprik, M., Klein, M.L., (1988) J. Chem. Phys., 89, p. 4918Barnett, R.N., Landman, U., Cleveland, C.L., Kestner, N.R., Jortner, J., (1988) Chem. Phys. Lett., 148, p. 249Sprik, M., Impey, R.W., Klein, M.L., (1986) Phys. Rev. Lett., 56, p. 2326Martyna, G.J., Klein, M.L., (1992) J. Chem. Phys., 96, p. 7662Laria, D., Skaf, M.S., (2002) J. Phys. Chem. A, 106, p. 8066Gaathon, A., Czapski, G., Jortner, J., (1972) J. Chem. Phys., 58, p. 2648Jortner, J., Gaathon, A., (1977) Can. J. Chem., 55, p. 1801Bausenwein, T., Bertagnolli, H., David, A., Goller, K., Zweier, H., Todheide, K., Chieux, P., (1994) J. Chem. Phys., 101, p. 672Kiselev, M., Kerdcharoen, T., Hannongbua, S., Heizinger, K., (2000) Chem. Phys. Lett., 327, p. 425Feynmann, R.P., (1972) Statistical Mechanics, , Addison-Wesley, ReadingImpey, R.W., Klein, M.L., (1984) Chem. Phys. Lett., 104, p. 579Rudge, M.R.H., (1978) J. Phys. B, 11, p. 1503(1978) J. Phys. B, 11, p. 2221Rudge, M.R.H., (1980) J. Phys. B, 13, p. 1269Jain, A., Thompson, D.G., (1982) J. Phys. B, 15, pp. L631(1983) J. Phys. B, 16, p. 1113(1983) J. Phys. B, 16, p. 2593Gianturco, F.A., (1991) J. Phys. B, 24, p. 4627Chandler, D., Wolynes, P.G., (1981) J. Chem. Phys., 74, p. 4078Tuckerman, M.E., Berne, B.J., Martyna, G.J., Klein, M.L., (1993) J. Chem. Phys., 99, p. 2796Martyna, G.J., Tuckerman, M.E., Tobias, D.J., Klein, M.L., (1996) Mol. Phys., 87, p. 1117Tuckerman, M.E., Hughes, A., Path Integral Molecular Dynamics: A Computational Approach to Quantum Statistical Mechanics (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore), Chap. 14Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput. Phys., 23, p. 327Webster, F., Rossky, P.J., Friesner, R., (1991) Comput. Phys. Commun., 63, p. 494Staib, A., Borgis, D., (1995) J. Chem. Phys., 103, p. 2642Yang, C.-Y., Wong, K.F., Skaf, M.S., Rossky, P.J., (2001) J. Chem. Phys., 114, p. 3598Schnitker, J., Rossky, P.J., (1987) J. Chem. Phys., 86, p. 3471Buback, M., Harder, W.D., (1977) Ber. Bunsenges. Phys. Chem., 81, p. 603Wallqvist, A., Martyna, G.J., Berne, B.J., (1988) J. Phys. Chem., 92, p. 1721Schwanz, B.J., Rossky, P.J., (1994) J. Phys. Chem., 101, p. 6902Schwartz, B.J., Rossky, P.J., (1994) J. Phys. Chem., 101, p. 6917Rossky, P.J., Nonadiabatic Quantum Dynamics Simulation Using Classical Baths (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore), Chap. 22Herzberg, G., (1945) Infrared and Roman Spectra of Polyatomic Molecules, , Van Nostrand, PrincetonSchwartz, B.J., Rossky, P.J., (1996) J. Phys. Chem., 105, p. 6997Prezhdo, O.V., Rossky, P.J., (1996) J. Phys. Chem., 100, p. 17094Maroncelli, M., (1993) J. Mol. Liq., 57, p. 1Maroncelli, M., Kumar, P.V., Papazyan, A., (1993) J. Phys. Chem., 97, p. 13noteRe, M., Laria, D., (1997) J. Phys. Chem. A, 101, p. 1049

    Molecular dynamics simulations of AOT-water/formamide reverse micelles: Structural and dynamical properties

    Get PDF
    We present results from molecular dynamics simulations performed on reverse micelles immersed in cyclohexane. Three different inner polar phases are considered: water (W), formamide (FM), and an equimolar mixture of the two solvents. In all cases, the surfactant was sodium bis(2-ethylhexyl) sulfosuccinate (usually known as AOT). The initial radii of the micelles were R∌15 Å, while the corresponding polar solvent-to-surfactant molar ratios were intermediate between w0 =4.3 for FM and w0 =7 for W. The resulting overall shapes of the micelles resemble distorted ellipsoids, with average eccentricities of the order of ∌0.75. Moreover, the pattern of the surfactant layer separating the inner pool from the non-polar phase looks highly irregular, with a roughness characterized by length scales comparable to the micelle radii. Solvent dipole orientation polarization along radial directions exhibit steady growths as one moves from central positions toward head group locations. Local density correlations within the micelles indicate preferential solvation of sodium ionic species by water, in contrast to the behavior found in bulk equimolar mixtures. Still, a sizable fraction of ∌90% of Na+ remains associated with the head groups. Compared to bulk results, the translational and rotational modes of the confined solvents exhibit important retardations, most notably those operated in rotational motions where the characteristic time scales may be up to 50 times larger. Modifications of the intramolecular connectivity expressed in terms of the average number of hydrogen bonds and their lifetimes are also discussed. © 2008 American Institute of Physics.Fil:Pomata, M.H.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Laria, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Elola, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Rotational Dynamics And Polymerization Of C60 In C60 -cubane Crystals: A Molecular Dynamics Study

    Get PDF
    We report classical and tight-binding molecular dynamics simulations of the C60 fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C60 fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed. © 2008 American Institute of Physics.1296Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., (1985) Nature (London), 318, p. 162. , 0028-0836 10.1038/318162a0Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., (1995) Science of Fullerenes and Carbon Nanotubes, , (Academic, San Diego, CA)Heiney, P.A., Fischer, J.E., McGhie, A.R., Romanow, W.J., Denenstein, A.M., Mccauley Jr., J.P., Smith, A.B., Cox, D.E., (1991) Phys. Rev. Lett., 66, p. 2911. , 0031-9007 10.1103/PhysRevLett.66.2911Saito, S., Oshiyama, A., (1991) Phys. Rev. Lett., 66, p. 2637. , 0031-9007 10.1103/PhysRevLett.66.2637Sundqvist, B., (1999) Adv. Phys., 48, p. 1. , 0001-8732 10.1080/000187399243464Iwasa, Y., Arima, T., Fleming, R.M., Siegrist, T., Zhou, O., Haddon, R.C., Rothberg, L.J., Yagi, T., (1994) Science, 264, p. 1570. , 0036-8075 10.1126/science.264.5165.1570NĂșez-Regueiro, M., Marques, L., Hodeau, J.-L., B́thoux, O., Perroux, M., (1995) Phys. Rev. Lett., 74, p. 278. , 0031-9007 10.1103/PhysRevLett.74.278Goze, C., Rachdi, F., Hajji, L., NĂșez-Regueiro, M., Marques, L., Hodeau, J.-L., Mehring, M., (1996) Phys. Rev. B, 54, p. 3676. , 0163-1829 10.1103/PhysRevB.54.R3676Talyzin, A.V., Dubrovinsky, L.S., Le Bihan, T., Jansson, U., (2002) Phys. Rev. B, 65, p. 245413. , 0163-1829 10.1103/PhysRevB.65.245413Rao, A.M., Zhou, P., Wang, K.A., Hager, G.T., Holden, J.M., Wang, U., Lee, W.T., Amster, I.J., (1993) Science, 259, p. 955. , 0036-8075Ranjan, K., Dharamvir, K., Jindal, V.K., (2006) Physica B (Amsterdam), 371, p. 232. , 0921-4526Pennington, C.H., Stenger, V.A., (1996) Rev. Mod. Phys., 68, p. 855. , 0034-6861 10.1103/RevModPhys.68.855Varshney, D., Varshney, M., Singhb, R.K., Mishraa, R., (1999) J. Phys. Chem. Solids, 60, p. 579. , 0022-3697 10.1016/S0022-3697(98)00327-8Aleksandrovskii, A.N., Gavrilko, V.G., Eselson, V.B., Manzhelii, V.G., Udovidchenko, B.G., Maletskiy, V.P., Sundqvist, B., (2001) Low Temp. Phys., 27, p. 1033. , 1063-777X 10.1063/1.1430848Tang, T.B., Gu, M., (2002) Phys. Solid State, 44, p. 631. , 1063-7834 10.1134/1.1470544Shul'ga, Yu.M., Martynenko, V.M., Shestakov, A.F., Baskakov, S.A., Kulikov, S.V., Vasilets, V.N., Makarova, T.L., Morozov, Yu.G., (2006) Russ. Chem. Bull., 55, p. 687Eaton, P.E., (1992) Angew. Chem., Int. Ed. Engl., 31, p. 1421. , 0570-0833 10.1002/anie.199214211Pekker, S., KovĂĄts, É., OszlĂĄnyi, G., B́nyei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Faigel, G., (2005) Nat. Mater., 4, p. 764. , 1476-1122 10.1038/nmat1468KovĂĄts, É., Klupp, G., Jakab, E., Pekker, ., KamarĂĄs, K., Jalsovszky, I., Pekker, S., (2006) Phys. Status Solidi B, 243, p. 2985. , 0370-1972 10.1002/pssb.200669195Pekker, S., KovĂĄts, É., OszlĂĄnyi, G., B́nyei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Faigel, G., (2006) Phys. Status Solidi B, 243, p. 3032. , 0370-1972 10.1002/pssb.200669136Iwasiewicz-Wabnig, A., Sundqvist, B., KovĂĄts, É., Jalsovszky, I., Pekker, S., (2007) Phys. Rev. B, 75, p. 024114. , 0163-1829 10.1103/PhysRevB.75.024114Mackerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Karplus, M., (1998) J. Phys. Chem. B, 102, p. 3586. , 1089-5647 10.1021/jp973084fPhillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., (2005) J. Comput. Chem., 26, p. 1781. , 0192-8651 10.1002/jcc.20289BrĂŒnger, A., Brooks, C.B., Karplus, M., (1984) Chem. Phys. Lett., 105, p. 495. , 0009-2614 10.1016/0009-2614(84)80098-6Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation: From Algorithms to Applications, , (Academic, San Diego, CA)Brenner, D.W., (1990) Phys. Rev. B, 42, p. 9458. , 0163-1829 10.1103/PhysRevB.42.9458Porezag, D., Frauenheim, T., Kohler, T., Seifert, G., Kaschner, R., (1995) Phys. Rev. B, 51, p. 12947. , 0163-1829 10.1103/PhysRevB.51.12947Rurali, R., Hernandez, E., (2003) Comput. Mater. Sci., 28, p. 85. , 0927-0256 10.1016/S0927-0256(03)00100-9Terrones, H., Terrones, M., Hernandez, E., Grobert, N., Charlier, J.C., Ajayan, P.M., (2000) Phys. Rev. Lett., 84, p. 1716. , 0031-9007 10.1103/PhysRevLett.84.1716Hernandez, E., Meunier, V., Smith, B.W., Rurali, R., Terrones, H., Nardelii, M.B., Terrones, M., Charlier, J.-C., (2003) Nano Lett., 3, p. 1037. , 1530-6984 10.1021/nl034283fSanz-Serna, J.M., Calvo, M.P., (1995) Numerical Hamiltonian Problems, , (Chapman and Hall, New York)Bond, S.D., Leimkuhler, B.J., Laird, B.B., (1999) J. Comput. Phys., 151, p. 114. , 0021-9991 10.1006/jcph.1998.6171http://www.aip.org/pubservs/epaps.html, See EPAPS Document No. E-JCPSA6-129-508832 for the movie mentioned in the text. For more information on EPAPS, seeBerne, B.J., Pecora, R., (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, , (Dover, Mineola, NY)Williams, G., (1978) Chem. Soc. Rev., 7, p. 89. , 0306-0012 10.1039/cs9780700089Witt, R., Sturz, L., Dolle, A., M.-Plathe, F., (2000) J. Phys. Chem. A, 104, p. 5716. , 1089-5639 10.1021/jp000201Gamba, Z., Powell, B.M., (1996) J. Chem. Phys., 105, p. 2436. , 0021-9606 10.1063/1.472111Winterlich, M., Böhmer, R., Diezemann, G., Zimmermann, H., (2005) J. Chem. Phys., 123, p. 094504. , 0021-9606 10.1063/1.2013254Johnson, R.D., Yannoni, C.S., Dorn, H.C., Salem, J.R., Bethune, D.S., (1992) Science, 255, p. 1235. , 0036-8075 10.1126/science.255.5049.1235Tycko, R., Dabbagh, G., Fleming, R.M., Haddon, R.C., Makhija, A.V., Zahurak, S.M., (1991) Phys. Rev. Lett., 67, p. 1886. , 0031-9007 10.1103/PhysRevLett.67.1886The fitting for the range of 241-331 K for the reorientational correlation time τr in picoseconds is τr =0.81 ex(695/T), where T is the temperature in kelvins (Ref.)Li, Z., Anderson, S.L., (2003) J. Phys. Chem. A, 107, p. 1162. , references therein. 1089-5639Density functional theory calculations were performed with the SIESTA code (Refs.) in the local density approximation based on the Perdew-Zunger construction (Ref.) with the pseudopotential generated according to the Troullier-Martins scheme (Ref.). The standard double zeta plus polarization basis was used. Both pseudopotential and basis set were optimized according to Junqueira (Ref.)Sanchez-Portal, D., OrdejĂłn, P., Artacho, E., Soler, J.M., (1997) Int. J. Quantum Chem., 65, p. 453Soler, J., Artacho, E., Gale, J.D., GarcĂ­a, A., Junquera, J., OrdejĂłn, P., Sanchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, p. 2745. , 0953-8984 10.1088/0953-8984/14/11/302Perdew, J.P., Zunger, A., (1981) Phys. Rev. B, 23, p. 5048. , 0163-1829 10.1103/PhysRevB.23.5048Troullier, N., Martins, J.L., (1991) Phys. Rev. B, 43, p. 1993. , 0163-1829 10.1103/PhysRevB.43.1993Junquera, J., Paz, Ó., SĂĄnchez-Portal, D., Artacho, E., (2001) Phys. Rev. B, 64, p. 235111. , 0163-1829 10.1103/PhysRevB.64.235111Martin, H.D., Urbanek, T., Pfohler, P., Walsh, R., J. Chem. Soc., Chem. Commun., 1985, p. 964Martin, H.D., Urbanek, T., Walsh, R., (1985) J. Am. Chem. Soc., 107, p. 5532. , 0002-7863Martin, H.D., Pfohler, P., Urbanek, T., Walsh, R., (1983) Chem. Ber., 116, p. 1415. , 0009-2940Han, S., Yoon, M., Berber, S., Park, N., Osawa, E., Ihm, J., TomĂĄnek, D., (2004) Phys. Rev. B, 70, p. 113402. , 0163-1829 10.1103/PhysRevB.70.113402Li, F., Ramage, D., Lannin, J.S., Conceicao, J., (1991) Phys. Rev. B, 44, p. 1316

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (ttÂŻ) charge asymmetry AttÂŻC and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive ttÂŻ charge asymmetry is measured to be AttÂŻC = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the ttÂŻ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the ÎœÎœÂŻÂŻÂŻbbÂŻÂŻ, ℓ+ℓ−bbÂŻÂŻ, or ℓ±ΜbbÂŻÂŻ final states, where ℓ = e or ÎŒ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Precise measurements of W- and Z-boson transverse momentum spectra with the ATLAS detector using pp collisions at t √s = 5.02 TeV and 13 TeV

    Get PDF
    • 

    corecore