6 research outputs found

    Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what’s the best way to leverage regionalised information?

    Get PDF
    In this study, we used deep learning models with recurrent structure neural networks to simulate large-scale groundwater level (GWL) fluctuations in northern France. We developed a multi-station collective training for GWL simulations, using both “dynamic” variables (i.e. climatic) and static aquifer characteristics. This large-scale approach offers the possibility of incorporating dynamic and static features to cover more reservoir heterogeneities in the study area. Further, we investigated the performance of relevant feature extraction techniques such as clustering and wavelet transform decomposition, intending to simplify network learning using regionalised information. Several modelling performance tests were conducted. Models specifically trained on different types of GWL, clustered based on the spectral properties of the data, performed significantly better than models trained on the whole dataset. Clustering-based modelling reduces complexity in the training data and targets relevant information more efficiently. Applying multi-station models without prior clustering can lead the models to learn the dominant station behavior preferentially, ignoring unique local variations. In this respect, wavelet pre-processing was found to partially compensate clustering, bringing out common temporal and spectral characteristics shared by all available time series even when these characteristics are “hidden” because of too small amplitude. When employed along with prior clustering, thanks to its capability of capturing essential features across all time scales (high and low), wavelet decomposition used as a pre-processing technique provided significant improvement in model performance, particularly for GWLs dominated by low-frequency variations. This study advances our understanding of GWL simulation using deep learning, highlighting the importance of different model training approaches, the potential of wavelet preprocessing, and the value of incorporating static attributes

    Evaluation of deep-learning and tree-boosting machine learning models in automatic error correction of forecasts from a physics-based model: A case study on Storå river, Denmark

    Get PDF
    Accurate real-time flood predictions play a vital role in flood early warning systems, which further helps in mitigating the damage and saving lives. Error correction using machine learning (ML) in physics-based models (alternatively known as physicallybased models) has been widely considered and recommended in the literature to improve forecast accuracy. This study mainly focuses on evaluating the ability of novel tree-based ML methods and Bidirectional LSTM (BLSTM) at different lead times and high flow conditions. Also, the performance of these methods is compared with the traditionally used autoregression (AR), Multilayer perceptron (MLP), and naïve models. So overall, we evaluated six data-driven models and one naïve model on Storå river to correct the errors in the physics-based model: Two tree-boosting ML models (XGBoost, Gradient boosting), two deep learning-based models (MLP, BLSTM), and then simple models like autoregression (AR) & persistence (or naïve). Then, a stacked model combining XGBoost, and AR is developed and tested. Hyperparameter tuning is performed using Bayesian optimization. Results on the independent test set show that all the methods can improve the discharge simulations from a physics-based model. However, the Bidirectional LSTM and stacked model are consistently performed slightly better than other models in all lead times. At shorter lead times, tree-boosting approaches marginally underperformed. While gradient boosting performed better at longer lead times and produced results comparable to BLSTM and stacked models, XGBoost continues to underperform but gave better results than AR and PERS & MLP. The BLSTM and stacked models performed well under high flow conditions as well. Even though the difference is minor, they consistently outperformed all the other models. Furthermore, while tree-based methods (XGBoost & gradient boosting) fared somewhat worse than BLSTM & stacked model, they outperformed basic methods (AR/Pers) and MLP at high flow conditions. One additional key finding in this study is that even when the stacked model was built using less computationally intensive methods (XGBoost & AR), it produced equivalent results to BLSTM

    Groundwater level reconstruction using long-term climate reanalysis data and deep neural networks

    No full text
    Study region: Northern Metropolitan France. Study focus: Assessing long-term changes in groundwater is crucial for understanding the impacts of climate change on aquifers and for managing water resources.However, long-term groundwater level (GWL) records are often scarce, limiting the understanding of historical trends and variability. In this paper, we present a deep learning approach to reconstruct GWLs up to several decades back in time using recurrent-based neural networks with wavelet pre-processing and climate reanalysis data as inputs. GWLs are reconstructed using two different reanalysis datasets with distinct spatial resolutions (ERA5: 0.25° x 0.25° & ERA20C: 1° x 1°) and monthly time resolution, and the performance of the simulations were evaluated. New insights: Long term GWL timeseries are now available for northern France, corresponding to extended versions of observational timeseries back to early 20th century. All three types of piezometric behaviours could be reconstructed reliably and consistently capture the multi-decadal variability even at coarser resolutions, which is crucial for understanding long-term hydroclimatic trends and cycles. GWLs'multidecadal variability was consistent with the Atlantic multidecadal oscillation. From a synthetic experiment involving a modified long-term observational time series, we highlighted the need for longer training datasets for some low-frequency signals. Nevertheless, our study demonstrated the potential of using DL models together with reanalysis data to extend GWL observations and improve our understanding of groundwater variability and climate interactions

    A wavelet-assisted deep learning approach for simulating groundwater levels affected by low-frequency variability

    No full text
    International audienceGroundwater level (GWL) simulations allow the generation of reconstructions for exploring the past temporal variability of groundwater resources or provide the means for generating projections under climate change on decadal scales. In this context, analyzing GWLs affected by low-frequency variations is crucial. In this study, we assess the capabilities of three deep learning (DL) models (long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (BiLSTM)) in simulating three types of GWLs affected by varying low-frequency behavior: inertial (dominated by low-frequency), annual (dominated by annual cyclicity) and mixed (in which both annual and low-frequency variations have high amplitude). We also tested if maximal overlap discrete wavelet transform pre-processing (MODWT) of input variables helps to better identify the frequency content most relevant for the models (MODWT-DL models). Only external variables (i.e., precipitation, air temperature as raw data, and effective precipitation (EP)) were used as input. Results indicate that for inertial-type GWLs, MODWT-DL models with raw data were notably more accurate than standalone models. However, DL models performed well for annual-type GWLs, while using EP as input, with MODWT-DL models exhibiting only minor improvements. Using raw data as input improved MODWT-DL models compared to standalone models; nevertheless, all models using EP performed better for annual-type GWLs. For mixed-type GWLs, while using EP as input, MODWT-DL models performed well, with substantial improvements over standalone models. Using raw data as input, improvement of MODWT-DL models is marginal compared to that of standalone models; nevertheless, they perform better than standalone models with EP. The Shapley Additive exPlanations (SHAP) approach used to interpret models highlighted that they preferentially learned from low-frequency in precipitation data to achieve the best simulations for inertial and mixed GWLs. This study showed that MODWT-based input pre-processing is highly suitable to better simulate low-frequency varying GWLs

    Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what’s the best way to leverage regionalised information?

    No full text
    In this study, we used deep learning models with recurrent structure neural networks to simulate large-scale groundwater level (GWL) fluctuations in northern France. We developed a multi-station collective training for GWL simulations, using both “dynamic” variables (i.e. climatic) and static aquifer characteristics. This large-scale approach offers the possibility of incorporating dynamic and static features to cover more reservoir heterogeneities in the study area. Further, we investigated the performance of relevant feature extraction techniques such as clustering and wavelet transform decomposition, intending to simplify network learning using regionalised information. Several modelling performance tests were conducted. Models specifically trained on different types of GWL, clustered based on the spectral properties of the data, performed significantly better than models trained on the whole dataset. Clustering-based modelling reduces complexity in the training data and targets relevant information more efficiently. Applying multi-station models without prior clustering can lead the models to learn the dominant station behavior preferentially, ignoring unique local variations. In this respect, wavelet pre-processing was found to partially compensate clustering, bringing out common temporal and spectral characteristics shared by all available time series even when these characteristics are “hidden” because of too small amplitude. When employed along with prior clustering, thanks to its capability of capturing essential features across all time scales (high and low), wavelet decomposition used as a pre-processing technique provided significant improvement in model performance, particularly for GWLs dominated by low-frequency variations. This study advances our understanding of GWL simulation using deep learning, highlighting the importance of different model training approaches, the potential of wavelet preprocessing, and the value of incorporating static attributes

    The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING)

    Get PDF
    International audienceThe new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes
    corecore