

Evaluation of deep-learning and tree-boosting machine

learning models in automatic error correction of forecasts

from a physics-based model: A case study on Storå river,

Denmark.

Master of Science Thesis

 by

Sivarama Krishna Reddy Chidepudi

Supervisors

Dr. Nicola Balbarini (DHI)

Dr. Laura Frølich (DHI)

Prof. Niels Schütze (TU Dresden)

Examination Committee

Prof. Niels Schütze (TU Dresden), Chairman

Prof. Dimitri Solomatine (IHE Delft)

Dr. Nicola Balbarini (DHI)

Dr. Laura Frølich (DHI)

This research is submitted in partial fulfillment of requirements for the

MSc degree in Hydro Science and Engineering at the

Technische Universität Dresden, Germany

Dresden

20th August 2021

ii

Declaration of Independence

I hereby declare that I submitted my MSc thesis to the examination board of the

department of hydro-science and engineering entitled:

Evaluation of deep-learning and tree-boosting machine

learning models in automatic error correction of forecasts

from a physics-based model: A case study on Storå river,

Denmark.

I completed this work independently without using any other sources or aids other

than those specified, and I marked the citations appropriately.

Dresden: 20/08/2021

Sivarama Krishna Reddy Chidepudi

iii

Abstract

Accurate real-time flood predictions play a vital role in flood early warning systems,

which further helps in mitigating the damage and saving lives. Error correction using

machine learning (ML) in physics-based models (alternatively known as physically-

based models) has been widely considered and recommended in the literature to

improve forecast accuracy. This study mainly focuses on evaluating the ability of

novel tree-based ML methods and Bidirectional LSTM (BLSTM) at different lead times

and high flow conditions. Also, the performance of these methods is compared with

the traditionally used autoregression (AR), Multilayer perceptron (MLP), and naïve

models. So overall, we evaluated six data-driven models and one naïve model on

Storå river to correct the errors in the physics-based model: Two tree-boosting ML

models (XGBoost, Gradient boosting), two deep learning-based models (MLP,

BLSTM), and then simple models like autoregression (AR) & persistence (or naïve).

Then, a stacked model combining XGBoost, and AR is developed and tested.

Hyperparameter tuning is performed using Bayesian optimization. Results on the

independent test set show that all the methods can improve the discharge

simulations from a physics-based model. However, the Bidirectional LSTM and

stacked model are consistently performed slightly better than other models in all

lead times. At shorter lead times, tree-boosting approaches marginally

underperformed. While gradient boosting performed better at longer lead times and

produced results comparable to BLSTM and stacked models, XGBoost continues to

underperform but gave better results than AR and PERS & MLP. The BLSTM and

stacked models performed well under high flow conditions as well. Even though the

difference is minor, they consistently outperformed all the other models.

Furthermore, while tree-based methods (XGBoost & gradient boosting) fared

somewhat worse than BLSTM & stacked model, they outperformed basic methods

(AR/Pers) and MLP at high flow conditions. One additional key finding in this study is

that even when the stacked model was built using less computationally intensive

methods (XGBoost & AR), it produced equivalent results to BLSTM.

Keywords

iv

Error correction, AR, ANN, XGBoost, Bidirectional LSTM, Gradient Boosting, Stacking,

Physics-based model.

Acknowledgment

I want to thank my supervisors Dr. Laura Frølich & Dr. Nicola Balbarini from DHI, for

their continuous support and direction throughout my thesis. I am highly indebted

for their help since the beginning of the thesis through regular meetings, which

helped me focus on achieving the targeted objectives with enormous freedom to

explore all the possibilities in approaching the challenges faced at different phases

in this study. Further, I am also thankful to my supervisors in DHI for arranging all

the necessary things for my relocation and stay in Denmark during the tough times

of the ongoing COVID-19 pandemic.

My special thanks to Prof. Dimitri Solomatine and Prof. Biswa Bhattacharya for their

continuous support and valuable feedback throughout this MSc program. I am also

highly thankful to Prof. Niels Schütze for his timely response and arranging all the

academic requirements for my thesis examination at TU Dresden.

I sincerely thank all the Flood risk management MSc program professors who taught

us in all the four universities (TU Dresden, IHE Delft, UPC Barcelona & University of

Ljubljana) of the consortium. Including the staff members for their help in our

mobility to all the four locations as planned. Especially Ms. Judith Pöschmann & Ms.

Ineke Melis have played a crucial role in the mobility of this program. Thanks to

European Commission for providing the funding through the Erasmus Mundus flood

risk management program.

Finally, I am indebted to all my friends who are part of this MSc program and my

family members who supported me in all possible ways.

v

Conceptual Formulation
Applying machine learning & deep learning models to mitigate errors in river

predictions.

Introduction

High-accuracy flood prediction is important for real-time decision-making, such as

early warning systems and emergency response planning. Sometimes, errors in

predictions from physical models increase over time as assumptions underlying the

physical model change. Automatic monitoring of predictions and subsequent

observations may enable automatic correction of predictions.

Objectives

This study investigates the use of deep learning & machine learning models to

automatically correct predictions from physics-based models based on recent

predictions and observations. So, as to evaluate whether machine learning & deep

learning methods can improve predictions from physical models, corrected

predictions from machine learning methods are compared to the original

predictions, both with reference to historical observations.

Methodology

Machine learning methods like artificial neural networks (ANNs) can be used to

correct predictions of complex systems (e.g., Watson,(2019)). If the machine learning

or deep learning models that work well are found, these models can be inspected to

improve the modeled discharge normally and at high flow conditions. Also, the

possibilities of combining multiple models are to be assessed.

Expected outcome

One or more machine learning & deep learning models are trained and tested at a

site with an available flood model to assess their ability to improve predictions. The

performance of predictions corrected with machine learning solutions is compared

with existing flood model predictions.

Required skills

Experience in Python programming, knowledge of machine learning models.

vi

Table of Contents

Declaration of Independence ... ii

Abstract .. iii

Acknowledgment .. iv

Conceptual Formulation .. v

List of Figures .. ix

List of Tables .. xi

List of Symbols and abbreviations ... xii

Chapter 1 Introduction.. 2

1.1 Purpose ... 2

1.2 Background ... 2

1.3 Scope ... 2

1.4 Research Questions ... 3

1.5 Innovation ... 4

1.6 Practical Value ... 4

1.7 Objective .. 4

1.8 Structure of the thesis ... 4

Chapter 2 Literature Review ... 5

2.1 Auto-Regressive (AR) Models ... 5

2.1.1 AR models with exogenous input variables .. 5

2.2 Machine Learning models ... 5

2.3 Combination of approaches & hybrid models .. 6

2.4 Hydrologic post-processing ... 7

2.5 Knowledge-based modular models .. 8

Chapter 3 Methodology .. 9

3.1 Data splitting ... 9

3.2 Selection of input variables ... 10

3.3 Data scaling ... 11

vii

3.4 Hyperparameter optimization. ... 12

3.5 Performance evaluation measures .. 13

3.6 Models evaluated ... 15

3.6.1 Persistence Model ... 16

3.6.2 Auto Regressive Model .. 16

3.6.3 Deep Learning methods ... 16

3.6.4 Tree-boosting methods ... 22

3.6.5 Stacking Regressor .. 23

3.7 Software Used ... 23

Chapter 4 Case Study: Storå River, Denmark ... 24

4.1 Study area ... 24

4.2 Climate and Topography ... 25

4.3 Physics-based model.. 26

4.4 Data Availability .. 26

4.4.1 Discharge (Observed and Modelled) ... 27

4.4.2 Precipitation (Observed and Forecasted) .. 27

4.5 Previous research in the study area ... 27

Chapter 5 Experimental design .. 28

5.1 Data Preprocessing .. 31

5.1.1 Data Splitting .. 31

5.1.2 Input variables selection ... 32

5.1.3 Data scaling .. 33

5.2 Hyperparameter tuning. .. 33

5.2.1 Neural network-based methods .. 33

5.2.2 Boosting methods ... 35

5.3 Final Testing .. 36

Chapter 6 Results... 38

6.1 Results on the validation set ... 39

viii

6.2 Results on the final testing set .. 41

6.3 Discussion on Results .. 48

Chapter 7 Conclusions and future scope .. 49

7.1 Conclusions ... 49

7.2 Limitations & future scope .. 50

References .. 52

Appendices ... 60

Appendix A: Comparison of Pearson correlation and Average mutual information at

different lead times.. 60

Appendix B: Distribution plots of hyperparameters in Bayesian optimization for tree-

based and deep learning methods. ... 62

Appendix C: Learning curves of ANN at different lead times during validation and test

 ... 69

Appendix D: Learning curves of BLSTM at different lead times for validation and test

sets .. 71

Appendix E: Final best hyperparameters for the models evaluated 73

Appendix F: Comparison of corrected discharges at different lead times 75

ix

List of Figures

Figure 1: Categories of data splitting ... 9

Figure 2: Representation of time series cross-validation ... 10

Figure 3: Classification of models ... 15

Figure 4: Schematic representation of multilayer perceptron with one hidden layer

(adapted from (Solomatine, 2017) ... 18

Figure 5: Schematic representation of simple LSTM information flow at three

consecutive timesteps t-1, t, t+1(Modified and adapted from (Alizadeh et al., 2021)).

 ... 19

Figure 6: Schematic representation of Bidirectional LSTM (adapted and modified

from (Saeed et al., 2020)) .. 21

Figure 7: Base map of Storå River, Denmark .. 24

Figure 8: Average precipitation(top) and temperature(bottom) in Denmark between

1873-2008. (Source: (EEA, 2020) .. 25

Figure 9: Modelled and observed discharge time-series at SKÆRUM BRO station for

2011-2019 ... 27

Figure 10: General evaluation methodology ... 29

Figure 11: Schematic representation of workflow ... 30

Figure 12: Candidate variables time-series at SKÆRUM BRO station (Validation) 32

Figure 13: Candidate variables time-series at SKÆRUM BRO station (Test) 32

Figure 14: Average mutual information with input parameters Vs. Et+1 38

Figure 15: Pearson correlation in input parameters vs. Et+1 38

Figure 16: Performance statistics on validation data at different lead times 39

Figure 17: Comparison plots of corrected discharge time series for the validation data

at 48 hours lead time ... 40

Figure 18: Performance statistics on final training data at different lead times. 42

Figure 19: Performance statistics on the test data at different lead times. 43

Figure 20: Comparison plots of corrected discharge time series at 48 hours lead time

on the test set ... 47

Figure 21: Comparison plots of corrected discharge time series at 12 hours lead time

on the validation set. ... 75

Figure 22: Comparison plots of corrected discharge time series at 12 hours lead time

on the test set. .. 76

Figure 23: Comparison plots of corrected discharge time series at 24 hours lead time

on the validation set. ... 77

file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346531
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346533
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346535
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346535
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346535
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346536
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346536
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346540
file:///D:/Theisis/Final_Thesis_Report/Thesis_final_sivarama.docx%23_Toc80346541

x

Figure 24: Comparison plots of corrected discharge time series at 24 hours lead time

on the test set. .. 78

Figure 25: Comparison plots of corrected discharge time series at 36 hours lead time

on the validation set. ... 79

Figure 26: Comparison plots of corrected discharge time series at 36 hours lead time

on the test set. .. 80

xi

List of Tables
Table 1: Loss functions .. 18

Table 2: Timeline of the data sets after splitting ... 31

Table 3: Statistical Properties of error data in different splits (Mean, Min, Max, Std

dev, No of samples) ... 31

Table 4: Range of hyperparameter values used for multilayer perceptron 34

Table 5: Range of hyperparameter values used for Bidirectional LSTM 35

Table 6: Range of hyperparameter values used for Gradient boosting 35

Table 7: Range of hyperparameter values used for newton boosting (XGBoost) 36

Table 8: Best hyperparameters for a lead time of 12 hours .. 37

Table 9: RMSE obtained on training dataset at different lead times 41

Table 10: RMSE obtained on the test data set at different lead times. 42

Table 11: Change (%) in RMSE after correction on the test set. 44

Table 12: Change (%) in MAE after correction on the test set. 44

Table 13: Change (%) in R2 after correction on the test set. ... 45

Table 14: Change (%) in RMSE after correction in high flow events within the test set.

 ... 45

Table 15: Change (%) in MAE after correction in high flow events within the test set.

 ... 46

Table 16: % Change in R2 after correction in high flow events within the test set. ... 46

Table 17: Final best hyperparameters for tree-based and neural network-based

methods .. 73

Table 18: Final best hyperparameters for neural network-based methods 74

xii

List of Symbols and abbreviations

ANN: Artificial Neural Network

AI: Artificial Intelligence

ARXM: linear Auto-Regressive

Exogenous-input model

AR: Autoregressive

ARMASA: automatic time series

program (MATLAB Toolbox)

ARMA: Autoregressive Moving Average

BR: Bagged Regression

BP: Back Propagation

BLSTM: bidirectional LSTM

CNN: Convolutional Neural Network

DNN: Deep Neural Network

DMI: Danish Meteorological Institute

ECMWF: European Centre for

Medium-Range Weather Forecasts

FEC: Flood Error Correction

FFNN: Feed-Forward Neural Network

GBRT: Gradient Boosting Regression

Tree

HBV: Hydrologiska byråns

vattenbalansavdelning (Hydrological

Model)

IoT: Internet of Things

LSTM: Long Short-Term Memory

LTF: Linear Transfer Function

MLP: Multilayer Perceptron

MCP: Model Conditional Processor

MCD: Monte-Carlo Dropout

MDN: Mixture Density Networks

MAE: Mean Absolute Error

MS-EnsPost: multiscale postprocessor

for ensemble streamflow prediction,

NARXM: Non-linear Auto-Regressive

eXogenous-Input Model

NNU: Neural Network Updating

PERS: Persistence

PGRNN: Physics-Guided Recurrent

Neural Networks model

PEs: Processing Elements

ReLU: Rectified Linear Unit

RMSE: Root Mean Square Error

RNN: Recurrent Neural Networks

SMAR: Soil Moisture Accounting and

Routing

SB: Stacked Boosting

SAC-SMA: Sacramento Soil Moisture

Accounting model

SANN: Sequential Artificial Neural

Network

TIGGE: THORPEX Interactive Grand

Global Ensemble

TANH: Hyperbolic Tangent

XGBoost: Extreme Gradient Boosting

2

Chapter 1 Introduction

This chapter introduces the current study with its scope, practical value, and research

objectives.

1.1 Purpose

Accurate real-time flood predictions play a vital role in decision making, as in Early

warning systems & Emergency response planning. Improved predictions also

contribute to the enhanced safety of residents and reduced material damage. However,

errors in predictions from physics-based models can increase over time as assumptions

underlying the model change. Some of these errors are inevitable due to uncertainties

in the process. However, recent studies show forecast accuracy can be improved in

physics-based models using real-time error correction methods (L. Chen et al., 2015;

Madsen & Skotner, 2005).

1.2 Background

Error Correction (updating the output variables) methods widely improve the accuracy

of flood forecasts(Sun et al., 2018)). Since the beginning of hydrological forecasting,

many studies have evaluated the potential of error correction methods in the past few

decades. These studies focused on traditionally used AR Models(Goswami et al., 2005;

Lundberg, 1982; Refsgaard, 1997; Wu et al., 2012), Neural Network models (Abrahart &

See, 2000; Prakash et al., 2014), and KNN ((Akbari & Afshar, 2014; Wani et al., 2017).

1.3 Scope

Previous works mainly used error correction methods like autoregressive-moving-

average (ARMA) Moore, (2007), Wavelet transforms (Bogner & Kalas, (2008)) & Artificial

Neural Networks (Babovic et al., (2000); Watson, (2019)) in real-time flood forecasting.

However, there are still some persistent deficiencies in these methods like deficient

theoretical basis, truncated forecast period & requirement of additional parameters as

highlighted in Li et al. (2020).

With recent advancements in machine learning(ML) & deep-learning(DL), many new

error correction methods for physics-based models gained traction across various

fields. Watson (2019) tested error correction (using ANN) in predicting the chaotic

Lorenz'96 system and highlighted that it's easier to go for error correction than replace

3

the physically-based models. Jia et al. (2018) proposed a Physics-Guided Recurrent

Neural Networks model (PGRNN) using LSTM and RNN in simulating lake water

temperature. Ellenson et al. (2020) showed that Bagged regression (BR) successfully

detected error patterns in wave model outputs. Nearing et al. (2020) implemented a

post-processing strategy using LSTM on a conceptual model SAC-SMA and found

improvements in catchments with more snow. However, Siami-Namini et al. (2019)

showed that BLSTMs outperformed regular LSTMs and ARIMA in time series forecasting

because of the additional training layer in BLSTM, which improves learning long-term

dependencies.

In addition to this, novel ML methods like Gradient Boosting regression Tree (GBRT)

performed well in River Stage Forecasting Fu et al. (2019) and in predicting Mean Wave

Overtopping Discharge (den Bieman et al., 2020). Moreover, Ibrahem Ahmed Osman et

al. (2021) showed that the Extreme Gradient Boosting (XGBoost) model outperformed

the ANN and Support Vector Regression models in predicting groundwater levels.

Sigrist (2021) showed that Newton boosting performed better than gradient boosting

in predictive accuracy. So far, BLSTM, GBRT & NBRT were not tested on error correction

in physics-based models simulating discharge. It would be interesting to try these ML &

DL methods as earlier ML methods have shown impressive performance in error

correction. Thus, the main objective in the current study is to develop the framework

for BLSTM, Newton (XGBoost) & Gradient Boosting regression trees for automatic error

correction and then evaluate the performance against the traditional autoregressive

(AR) & ANN models. Further, the possibilities of combining multiple models are to be

assessed.

1.4 Research Questions

Specific research questions related to error correction within the framework of this

study are as follows:

• Can the Machine learning model (NBRT, GBRT, BLSTM) improve the performance

accuracy (R2, RMSE&MAE) over shorter (12hrs) and longer lead times (36-42hrs)?

• Will this model perform better than the traditionally used AR & ANN models?

• How will the proposed model, after combining multiple models using stacking

regressor perform?

• How will these models perform at high flow conditions?

4

1.5 Innovation

We evaluated the novel methods in machine learning and deep learning in error

correction of physics-based models in discharge predictions.

1.6 Practical Value

Automatic monitoring of predictions and subsequent observations may enable

automatic correction of forecasts. Effective error correction leads to more accurate

real-time flood predictions and operational flow control systems, which helps in

effective decision making. The current study can also be helpful in flood damage

mitigation, saving lives, and efficient operation of flow structures (e.g., reservoir).

Moreover, the machine learning or deep learning models that showed better accuracy

in higher lead times can replace the traditional methods, delivering better results only

in shorter lead times. Further, models are tested using the operational physics-based

model. So, the proposed models that gave better accuracy can directly implement for

operational flow forecasting.

1.7 Objective

This study mainly aims to evaluate the potential of new data-driven models (GBRT,

NBRT, BLSTM & Stacked model) in error correction of discharge simulations from

physics-based models.

1.8 Structure of the thesis

1st chapter starts with the introduction to the study and briefly describes the purpose

and practical value along with the primary objective and research questions. Then the

2nd chapter includes a literature review on the existing methods of error correction and

improving the forecast accuracy in rainfall-runoff models and uncertainty estimation.

3rd chapter consists of theoretical aspects of the methods used. Then comes the 4th

chapter, which describes the case study area details and analysis of the available data.

5th chapter begins with the experimental design adopted and a brief description of the

hyperparameter tuning performed in this study. Also, it discusses the approaches

adopted in developing and testing the models in detail. Followed by the 6th chapter

highlighting the main results obtained from the models considered and analyses the

results in the research questions. Finally, the last chapter discusses the conclusions and

limitations and the future scope of the current study.

5

Chapter 2 Literature Review

This chapter mainly focuses on the literature review of existing methods for error

correction. First simple methods like AR are explored, then studies using machine-

learning models are mentioned, followed by the combined approaches.

2.1 Auto-Regressive (AR) Models

Lundberg (1982) used a hydrological model (HBV) in conjunction with an AR error

model and showed that the AR model considerably improved the short-term forecasts

while not having much improvement in the long-term forecasts (10 days or more).

Broersen & Weerts (2005) studied the automatic time series program ARMASA for error

correction in an HBV-96 hourly model and performed better than AR.

Refsgaard (1997) compared two updating procedures (ARMA & Extended Kalman

filtering) and concluded that they significantly improve the performance of short-range

hydrological forecasting. Abrahart & See (2000) compared Neural Network and ARMA

for continuous river flow forecasting and found similar results in both methods. Xiong

& O'Connor (2002) evaluated methods for error correction, including AR, ANN, and a

fuzzy autoregressive threshold, and showed that AR performed better ANN.

2.1.1 AR models with exogenous input variables

Shamseldin & O'Connor (2001) tested Non-linear Auto-Regressive exogenous-Input

Model (NARXM) on simulating discharge forecasts (SMAR) and compared it with Linear

Auto-Regressive Exogenous-input (ARXM) method and then suggested NARXM as a

decent alternative to AR models. Goswami et al. (2005) compared eight error updating

models in discharge forecasts (SMAR) and found them to give relatively good 1-day

ahead predictions. Still, for higher lead times (6-days ahead), only three models (Non-

linear Auto-Regressive exogenous-Input Model (NARXM), Linear Transfer Function

(LTF), and Neural Network Updating (NNU)) performed well. They used rainfall

observations as an ideal representation of rainfall forecasts.

2.2 Machine Learning models

Babovic et al. (2000) used ANNs to forecast errors in operational forecasting of current

speed (MIKE 21) in the Danish Øresund Strait and found these to have good forecast

skills. Khu et al. (2001) employed genetic programming for error correction in a rainfall-

6

runoff model. They found accurate results in predicting runoff for lead times within the

time of concentration of the catchment. Torres-Rua et al. (2012) used two machine

learning algorithms, relevance vector machine (RVM) and multilayer perceptron (MLP),

in a simulation model with its application in canal flow control scheme and found them

to be efficient in minimizing the error. (Prakash, Sudheer, and Srinivasan (2014))

proposed Sequential ANN (SANN) with error updating in river flow forecasting, and the

results showed that SANN outperforms conventional ANN by providing accurate

forecasts at higher lead times (up to 8 days ahead).

(Wunsch et al., 2021) compared LSTM, CNN & NARX in groundwater level forecasting

and found that NARX outperformed the other two when the training period is shorter

but mentioned that LSTM and CNN could perform better if larger training periods are

available.

2.3 Combination of approaches & hybrid models

Yu & Chen (2005) proposed an error correction model using fuzzy rules in a real-time

flood forecasting system which improved discharge forecasts for one to four hours

ahead. Similar results were obtained in real-time river stage correction using the Least

Squares Method (Hsu, Fu, and Liu, (2003)) & a combination of forecast errors (AR & MA)

(Wu et al., (2012)). Shen et al. (2015) further incorporated a Kalman filter in the method

proposed by Wu et al. (2012) and concluded that the accuracy improved on average by

50%.

Similarly, Madsen and Skotner (2005) proposed a data assimilation approach using

hybrid filtering and error correction (Harmonic Error & Autoregressive(AR)) in

operational flood forecasting (MIKE11). They found significant improvement in forecast

accuracy for lead times up to 24 h.

Bogner and Kalas (2008) combined wavelet transformations & state-space models for

error correction in discharge forecasts and found that the timing accuracy of the

estimates improved. Further L. Chen et al. (2015) compared different combinations of

a) real-time flood error correction (FEC) using AR with b) multi-model combination (MC)

technique. They concluded that a combination of these two methods could increase

reliability and accuracy.

7

Babel et al. (2020) Implemented a combined filtering and error correction forecast

method with data assimilation in a physically-based (Urban Drainage) model. They

found it to have increased forecast skill and lead time. Farchi et al. (2020) proposed a

hybrid surrogate model by combining data assimilation and machine learning (DNN &

CNN) for error correction in numerical weather Prediction.

Apart from this, in real-time discharge forecasts, the system response curve method is

widely used for error correction. (Li et al., (2020); Liang et al., (2021)) and Pagano et al.

(2011) proposed a dual-pass error correction technique for long and short-term

memory corrections.

2.4 Hydrologic post-processing

Several studies developed hydrologic post-processors; Krzysztofowicz & Kelly (2000)

proposed a hydrologic uncertainty processor (HUP) to obtain probabilistic river stage

forecasts by aggregating all the uncertainties. Raftery et al. (2005) proposed a Bayesian

model averaging (BMA) based statistical post-processing method to calibrate the

ensemble forecasts.

Later, Todini (2008) proposed a Model Conditional Processor (MCP), an alternative to

BMA & HUP for predictive uncertainty assessment. After that, (Bogner & Pappenberger,

2011) combined HUP with error correction methods to estimate the predictive

uncertainty in the corrected flow of the flow forecasting system.

Ehlers et al. (2019) tested the k-Nearest Neighbors (kNN)- resampling method to

generate residual uncertainty estimates and found it to give robust results for

hydrological variables (e.g., soil moisture, hydraulic head, etc.).

This approach was before tested by Wani et al. (2017) for residual uncertainty in

streamflow forecasting and found the accuracy to be comparable to other techniques

like uncertainty estimation based on local errors and clustering (UNEEC; (Shrestha &

Solomatine, 2006, 2008) and Quantile regression (QR; Dogulu et al., 2015; Weerts et al.,

2011).

Tyralis et al. (2019) proposed a new post-processing approach where quantile

regression is stacked with quantile regression forests to improve probabilistic

predictions. Acharya et al. (2020) compared different quantile regression methods for

8

hydrological post-processing and found the results similar to earlier studies on QR

configurations (López López et al., 2014).

Other methodologies adopted in the deep learning framework are: (Klotz et al., 2020)

tested four strategies (3 Mixture Density Networks and 1 Monte Carlo Dropout) for

uncertainty estimation in deep learning for rainfall-runoff modeling. Some researchers

combined the LUBE framework with LSTM to generate prediction intervals in wind

power forecasting (Banik et al., 2020; Saeed et al., 2020).

2.5 Knowledge-based modular models

 A modular model (Corzo, 2009) is a model with structural representation using

particular domain knowledge, also known as a committee machine. (Corzo &

Solomatine, 2007a) employed three baseflow separation techniques into ANN models

and found that modular models integrating hydrological knowledge performed better

than traditional ANN-based models in streamflow forecasting. (Corzo & Solomatine,

2007b) studied different data partitioning techniques incorporating domain knowledge

and found that developing local specialized models is effective in predictive modeling.

Further, Kayastha et al. (2013) formed a fuzzy committee model employing specialized

hydrological models for different flow regimes to minimize the error at high and low

flow conditions separately and showed that fuzzy committee outperformed the

individual models.

(Pianosi et al., 2014) proposed an error correction model with a prior classification

system based on flow condition and forecasted rainfall to identify the source of error

and then use a data-driven model specific to the classified error source. Further, the

results from this study show that even the combination of simple classification(if-then)

and linear correction improved the forecast capabilities of the hydrological model.

9

Chapter 3 Methodology

This chapter mainly focuses on theoretical aspects of the approaches used during

developing and evaluating the data-driven models.

3.1 Data splitting

The primary purpose of data splitting into three sets is to avoid overfitting and evaluate

the model's performance on unseen data. Specifically, a validation set avoids the

overfitting of the model and a testing set to verify the model performance on new data

before putting it into operation. The total available data is split into three sets, as shown

in Figure 1. Generally, it is required to split these subsets to have similar statistical

distribution in all (Solomatine, 2017).

In this study, splitting is performed as shown in Figure 1, i.e., three different sets in the

proportion of 60:20:20. In addition to this, especially when there is limited data

available, there are some other ways of cross-validation. The commonly used approach

is K-fold cross-validation which splits the whole data into K parts. Each iteration uses

one subset as a validation set to compute the performance metric by training the

remaining subsets. Finally, this approach computes the average of all metrics to get the

overall representation of the model performance.

Like K-fold, another approach called time-series split cross-validation is used in time

series problems where chronological order must be maintained, and future values

cannot be used to predict past values. Figure 2 shows the representation of splits in

this approach.

Total Available Data

Training set Validation set Testing set

Figure 1: Categories of data splitting

10

Figure 2: Representation of time series cross-validation

3.2 Selection of input variables

Input variables selection is a crucial step in building data-driven models for hydrological

applications. It is not always possible to select all the possible variables even with

enough data, as it makes the model complex, challenging to interpret, and more prone

to overfitting. There are several methods to select "important" variables, and the most

used ones are described below:

Correlation: The Pearson correlation coefficient R, between two variables X and Y, can

be obtained using the equation (1).

𝑅 =

∑ (𝑥𝑖 − �̅�)𝑘
𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑘
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑘

𝑖=1

(1)

It quantifies the linear relationship strength between the observations and forecasts.

Candidate variables with higher correlation with the target variables should be selected

for model development.

11

Average mutual information (AMI): The AMI(Fraser & Swinney, 1986; Shrestha et al.,

2009) between two random variables, X and Y, can be computed in equation (2)

𝐴𝑀𝐼 = ∑ 𝑃𝑋𝑌(𝑥𝑖 , 𝑦𝑖) log2 ⌊

𝑃𝑋𝑌(𝑥𝑖 , 𝑦𝑖)

𝑃𝑋(𝑥𝑖)𝑃𝑌(𝑦𝑖)
⌋

𝑖,𝑗

(2)

It quantifies the non-linear relationship between two variables. Like correlation,

variables with high AMI values should be selected.

The selection of important variables has other advantages like reduced training times

and improved computational efficiency in data-driven models. When there are many

variables, dimensionality reduction techniques like principal component analysis (PCA)

are used to develop a few composite variables, also known as features.

In addition to the variable selection methods mentioned above, the tree-based machine

learning models also have impurity-based feature importance and permutation feature

importance for input variable selection.

But in our current study, we focused on using simple methods like correlation and AMI

for selecting the input variables.

3.3 Data scaling

Scaling of input and output variables can be performed by standardizing or

normalizing. Scaling of input variables helps in making the learning stable and leads to

faster convergence. While target variables scaling helps in avoiding the exploding

gradients problem. Specifically, it helps when the input variables have different units

and high variance in the values.

Figure SEQ Figure * ARABIC 1: Outline for general methodology

Normalization Standardization

Data Scaling

12

1. Standard scaler standardizes the data using the mean (𝑥𝑚𝑒𝑎𝑛) and standard

deviation (𝜎) as shown in equation (3).

𝑥𝑠𝑐𝑎𝑙𝑒 =

(𝑥 − 𝑥𝑚𝑒𝑎𝑛)

𝜎

(3)

2. Min-max Scaler normalizes the data into the range of (0,1) using the equation

shown in equation (4).

 𝑥𝑠𝑐𝑎𝑙𝑒 = (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) (4)

Where 𝑥 and 𝑥𝑠𝑐𝑎𝑙𝑒 Denotes the original and scaled data.

We performed scaling after splitting the data to avoid data leakages in the validation

and test set. So, we used training data (Known data) to fit the scalar and then transform

it on validation and test set.

For our current study, we used MinMaxScaler for data scaling (i.e., to normalize

features).

3.4 Hyperparameter optimization.

Data-driven models have hyperparameters that need to be set during model

initialization. They play a crucial role by controlling the overall training behavior of the

model and significantly impact the model's overall performance. Hence, finding

hyperparameters that suit our problem requirements is necessary. This process of

finding the hyperparameters is known as hyperparameter optimization. There are

several ways for optimizing the hyperparameters as described below:

1. Grid Search

 This method first divides the domain of the hyperparameters into a discrete grid. Then,

It evaluates every combination of values in this grid using performance metrics (RMSE,

MSE, etc.) in a cross-validation set. While this method gives the best group of

hyperparameters, it is prolonged.

13

2. Random Search

It is like grid search, but instead of checking all combinations of values as in grid search,

this approach tests a randomly selected subset of the points in the grid. It may not give

the best set of values as in grid search but still can provide a good set of values which

can result in a good model.

3. Bayesian Optimization

Unlike random and grid search, Bayesian approaches use Bayes' theorem to obtain the

minimum or maximum of the objective function. This approach develops a probabilistic

model based on past evaluations. Then uses it to select the hyperparameter set for the

subsequent assessment.

After testing all the methods mentioned above, we chose Bayesian optimization

through the python implementation optuna to perform final hyper-parameter tuning.

Optuna (Akiba et al., (2019)) uses Tree-structured Parzen estimators, also a Bayesian

optimization form.

3.5 Performance evaluation measures

The performance of the models can be quantified using statistical indices/measures.

The most used performance evaluation indices to estimate the quality of predictions

from different models are root mean squared error, mean absolute error, & coefficient

of determination, as described below.

1. Mean Absolute Error (MAE):

MAE gives the mean absolute difference between the corrected discharge and

observed discharge, irrespective of sign, and it does not penalize the high errors, unlike

RMSE. The MAE of corrected model discharges (𝑄𝑡+1𝐶𝑜𝑟𝑟
) at 1 step ahead relative to

observed discharge (𝑄𝑡+1𝑜𝑏𝑠) takes the form of the equation (5). Values of MAE closer

to zero are desirable.

𝑀𝐴𝐸 =

1

𝑁
∑ |𝑄𝑡+1𝐶𝑜𝑟𝑟

− 𝑄𝑡+1𝑜𝑏𝑠 |

𝑛

𝑖=1

(5)

0 ≤ 𝑀𝐴𝐸 < +∞

14

2. Root Mean Squared Error (RMSE):

RMSE gives the square root of the mean square error of the corrected discharges, and

unlike MAE, it penalizes the high errors. More importantly, RMSE has the same units as

the discharge (m3/s) in our current study. The RMSE of corrected model discharges

(𝑄𝑡+1𝐶𝑜𝑟𝑟
) at one step ahead, relative to observed discharge (𝑄𝑡+1𝑜𝑏𝑠) takes the form of

the equation (6). Values of RMSE closer to zero are desirable.

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √

∑ (𝑄𝑡+1𝐶𝑜𝑟𝑟
−𝑄𝑡+1𝑜𝑏𝑠)2𝑛

𝑖=1

𝑛

(6)

 0 ≤ 𝑅𝑀𝑆𝐸 < +∞

Further to assess the improvement, we used % of reduction in RMSE, which can be

calculated as the equation (7).

% 𝐶ℎ𝑎𝑛𝑔𝑒 =

(𝑁𝑒𝑤 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
∗ 100

(7)

In our case study, the new value refers to RMSE obtained from corrected discharges

from different models. The original value refers to RMSE obtained from simulation

discharge (i.e., before correction).

3. Coefficient of Determination:

The Coefficient of Determination (R2) (also referred to as Nash Sutcliffe efficiency (Nash

& Sutcliffe, 1970)) indicates the closeness of the variable data to the fitted regression

line. The R2 of corrected model discharges (𝑄𝑡+1𝐶𝑜𝑟𝑟
) at 1 step ahead relative to observed

discharge (𝑄𝑡+1𝑜𝑏𝑠) takes the form of the equation (8). Values of R2 closer to one are

desirable.

 𝑅2 = 1 −
∑(𝑄𝑡+1𝐶𝑜𝑟𝑟

−𝑄𝑡+1𝑜𝑏𝑠)
2

∑(𝑄𝑡+1𝐶𝑜𝑟𝑟
−𝑄𝑡+1𝑚𝑒𝑎𝑛)2 (8)

−∞ < 𝑅2 ≤ 1

15

4. High flow threshold

Further to testing the overall dataset, we are also evaluating the performance of the

models at high flow events. The flow thresholds defined are as follows: High flow

(Observed discharge > 80 percentile). We are focusing on only high flow events

separately as it's the priority for the study area.

All the equations mentioned above are adapted and modified from (Solomatine 2017).

3.6 Models evaluated

The main objective here is to evaluate the BLSTM, tree-boosting machine learning

methods, and stacked models to correct the error in the physics-based model. But the

traditional models like persistence, AR, and MLP are also evaluated to understand the

novel methods' performance relative to these traditional methods. The complete list of

models evaluated and the broad classification is shown in Figure 3, followed by the

description of each method and the hyperparameters involved.

Persistence

Error Correction

Data Driven Models

Boosting methods
Neural network-

based methods

Multilayer

Perceptron

Bidirectional Long

Short-Term Memory

Gradient

Boosting

XGBoost (Newton

Boosting)

Autoregression Stacking

Regressor

(AR+XGBoost

)

Figure 3: Classification of models

16

3.6.1 Persistence Model

The persistence model uses the values from the most recent time step available to

determine the value for the upcoming time step. In other words, the error at time t+i

(where i is the number of time steps ahead) is equivalent to the error at time t.

Et+i = Et

3.6.2 Auto Regressive Model

The autoregressive model uses values from the previous time steps as an input to

predict the values for the upcoming time steps with linear regression. A linear

univariate autoregressive error correction model using four lags:

Et+i = AR (5) =f (Et, Et-1, Et-2, Et-3, Et-4)

where i = number of time steps ahead.

3.6.3 Deep Learning methods

Two deep learning methods are being studied, one being the simple multilayer

perceptron and the second one is the Bidirectional LSTM. The detailed description of

each method, along with the simple LSTM for better understanding, is as follows:

1. Multilayer Perceptron

Multilayer Perceptron (MLP) is a commonly used variant of an artificial neural network

(ANN) interconnected with several nodes (also known as neurons, units, or processing

elements (PEs)). A simple MLP, as shown in Figure 4, consists of an input layer, an output

layer, and a hidden layer.

The lines signify connection weights among nodes. The number of nodes present in the

input layer is equivalent to the size of input features. This layer sends the input features

(or variables) (xi) to the units in hidden layers without performing any operation. Then

the nodes in the hidden layer multiply the input using a set of weights. The output value

will usually obtain using a bounded non-linear transfer function in the hidden layer

(e.g., ReLU or tanh), which transforms the result.

The number of hidden nodes indicates the network complexity and determines its

ability to approximate. Finally, the weights are updated using the backpropagation

17

algorithm, which mainly deals with computed errors and propagating them back

through the network (Solomatine, 2017).

Hyperparameters involved in MLP are hidden layer, hidden units, optimizers, learning

rate, dropout, epochs, loss functions, batch size, and activation functions.

The hyperparameter "number of epochs" signifies the complete passes the model

performs during training.

Activation functions in deep learning models allow the model to learn nonlinearity in

the data. Here we considered two commonly used activation functions for optimization

as described below:

1. ReLU: Rectified Linear Activation function [0, ∞)

This function returns the input as output when the input is positive and returns zero

when the input is negative.

2. Tanh: Hyperbolic tangent activation function. Range (-1,1)

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Optimizers are the algorithms used to modify the attributes (weights and learning rate)

in MLP to reduce the losses. Here we checked three different optimizers, and

differences among them are described as follows:

1. Adam

Adaptive Moment Estimation (also known as Adam) takes adaptive learning rate

from estimates of first and second-order moments.

2. SGD

Stochastic Gradient Descent does not change the learning rate during training,

i.e., it maintains a constant learning rate.

3. RMSprop

Root Mean Squared Propagation also uses an adaptive learning rate.

18

Figure 4: Schematic representation of multilayer perceptron with one hidden layer (adapted from (Solomatine, 2017)

Different loss functions penalize the outliers(errors) differently; hence five loss

functions are optimized within the Bayesian optimization and other hyperparameters

by choosing the metric (RMSE) as an objective function in this study.

Table 1 shows the outliers considered in this study and their effect on outliers.

Table 1: Loss functions

Loss function Reaction to outliers

Mean square

error

Penalizes the outliers

heavily

Mean

absolute error

Robust to outliers

Mean square

logarithmic

error

penalizes underestimates

more than overestimates

Huber loss Less sensitive to outliers

Logcosh Less sensitive to outliers

2. Simple LSTM

LSTM (Alizadeh et al., 2021; Hochreiter, 1997) overcomes vanishing gradient problems

and long-term dependency by presenting a novel hidden state, named cell state ct, that

retains the historical information. In addition, LSTM also has internal mechanisms to

regulate the flow of information in the form of control gates. The gates are named

forget, input & output gates.

19

The flow of information(Alizadeh et al., 2021) in simple LSTM is as depicted in Figure 5 and described below in three steps:

1. In step 1, the forget gate manages the information from the prior cell state 𝑐𝑡−1, which would then be added to the present

state with the help of element-wise multiplication operator (⊗) in the form as 𝑓𝑡 ⊗ 𝑐𝑡−1 . This gate gives the binary output

(0,1) with 0 indicating deletion of all previous information, and one means retaining all the information.

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)

Figure 5: Schematic representation of simple LSTM information flow at three consecutive timesteps t-1, t, t+1(Modified and adapted from (Alizadeh et al., 2021)).

xt-1

ht

ht-2

ht+1

ht+1

ct+1
ct

ht

xt+1

ht-1

xt

tanh σ σ σ

tanh tanh

tanh σ σ σ

tanh

tanh σ σ σ

ct-2 ct-1
ht-1

ft it 𝑐ǁt

ot

Element-wise

Addition

Element-wise

Multiplication

20

Then in the second step, the present cell state is computed in three phases

a. The first phase involves converting the values of 𝑥𝑡 and ℎ𝑡−1 into the range of

(-1,1) to get a new cell state 𝑐ǁ𝑡 using an activation function (tanh).

 𝑐ǁ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)

b. In the second phase, values resulting from the input gate (𝑖𝑡) are used to

reorganize the present cell state 𝑐𝑡 as 𝑖𝑡 ⊗ 𝑐ǁ𝑡 . The input gate regulates both

the sequence of input data at present (𝑥𝑡) and hidden state information at t-1

(ℎ𝑡−1), which incorporate into the cell state as:

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)

c. In the final phase, the new cell state, 𝑐𝑡 is obtained by adding a revised cell

state in step 1 (𝑓𝑡 ⊗ 𝑐𝑡−1) with the updated cell state in previous phases

(2.b) (𝑖𝑡 ⊗ 𝑐ǁ𝑡).

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝑐ǁ𝑡

In the third and final step, the information in the new cell state that has to pass as an

output of the present LSTM and the new hidden state to the upcoming cell is

managed by the output gate (Alizadeh et al., 2021).

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ 𝑡−1 + 𝑏𝑜)

ℎ𝑡 = 𝑜 ⊗ 𝑡𝑎𝑛ℎ(𝑐𝑡)

Abbreviations used in the above equations:

W, U: matrix of network weights

𝑓𝑡, 𝑖𝑡 , 𝑜𝑡: outputs from forget, input, and output gates

𝑐𝑡 , 𝑐𝑡−1 : Cell states at t and t-1

𝜎 : Sigmoid function

ℎ𝑡, ℎ𝑡−1: Current and previous hidden states

 𝑐ǁ𝑡 : cell candidate value

b: bias vector

21

3. Bidirectional LSTM

Bidirectional LSTM trains two LSTM models. The first model learns the input

sequence, i.e., in the forward state, while the second model learns from the opposite

direction of the input sequence, i.e., through backward states(Saeed et al., 2020), as

depicted in Figure 6. Both models get merged using the concatenation mechanism

by default. In other words, BLSTMs include an additional layer of training data than

simple LSTMs.

Moreover, Siami-Namini et al. (2019) showed that BLSTMs outperformed regular

LSTMs and ARIMA in time series forecasting because of the additional training layer

in BLSTM, which improves learning long-term dependencies.

In addition to the hyperparameters mentioned in MLP, BLSTM has one other

parameter, i.e., sequence length helps the model retain more training samples.

Figure 6: Schematic representation of Bidirectional LSTM (adapted and modified from (Saeed et al., 2020))

Forward States

Xn-1 Xn Xn+1

LSTM LSTM LSTM

LSTM LSTM LSTM

Backward States

Yn-1 Yn Yn+1

22

3.6.4 Tree-boosting methods

The current section describes the two tree-boosting machine learning methods

(Gradient and Newton) of boosting used in this study.

Gradient Boosting(GB) ((Friedman, 2002) is an ensemble machine learning model

commonly used for regression and classification tasks. GB uses the steepest gradient

descent to minimize the loss function. The main idea behind these boosting or

ensemble-based models is to adapt weak learners into strong learners by fitting

weak learners to the previously evaluated negative gradient vector of the loss

function. Here, weak learners are the regression trees that have low predictive ability.

In simple terms, GB is an ensemble method that sequentially includes new models

to the original ensemble. Specifically, “A new model is trained at each iteration to

minimize the error of ensemble learned so far” (Papacharalampous et al., 2019).

Hyperparameters in gradient boosting are classified as boosting and tree-specific

parameters based on their effect on boosting operations and an individual tree,

respectively.

1. Tree-specific parameters are min_samples_leaf, max_depth.

• max_depth; maximum depth in each tree, and

• min_samples_leaf: minimum number of samples in the leaf node.

2. Boosting parameters are n_estimators, subsample, and learning rate.

• n_estimators represent the number of trees,

• learning_rate indicates the contribution of each tree on the final prediction,

• the sub-sample shows the sample proportion to be used.

XGBoost (T. Chen & Guestrin, (2016)) is a scalable tree-boosting machine learning

system. It solves the minimization of loss function using newton's method, i.e.,

through the second derivative. Hence some researchers called it an implementation

of newton boosting (Didrick, 2016; Sigrist, 2021). Alternatively, it is an improved

variant of Gradient boosting with regularization. It uses a more advanced regularized

model form (L1 & L2) to control over-fitting, resulting in better performance through

model generalization capabilities. Apart from hyperparameters in gradient boosting,

XGBoost has L1 & L2 regularisation parameters (alpha and lambda) and gamma,

which affect the model's performance.

23

(Sigrist, 2021) differentiated the Gradient boosting and newton boosting techniques

based on the updating steps (“Gradient descent and Second-order newton updates”

(Sigrist, 2021)) for finding the tree structures. The python package XGBoost

implements the Newton boosting and Python library scikit-learn (Pedregosa et al.,

2011) implements Gradient boosting regressor based on the approach of (Friedman

2001).

3.6.5 Stacking Regressor

Stacking regressor is a type of ensemble learning that combines the skills of different

models to generate final estimates. SR trains all the models considered to make the

predictions and uses them to generalize the final output. Using stacking regressor,

we build a new model with XGBoost being the base estimator and autoregressive

model as the final estimator.

3.7 Software Used

The Deep-Learning models are built using TensorFlow ((Abadi et al., 2016)) and Keras

((Chollet, 2015)). The machine learning framework used is Scikit learn (Pedregosa et

al., 2011). we prepared all figures using Matplotlib ((Hunter, 2007)),

Pandas((McKinney, 2010), & NumPy ((Van Der Walt et al., 2011). The random seed

function enables the models to generate reproducible results. Model development

is entirely in the form of Jupyter notebooks.

All this work is carried out in python version 3.8.3 using a laptop with hardware

configurations of Intel(R) Core (TM) i7-10510U CPU @ 1.80GHz 2.30 GHz and 8GB

RAM

24

Chapter 4 Case Study: Storå River, Denmark

This chapter presents details of the case study, including the details of the study area,

climate and topographical information, details of the physics-based model, and

available data with some details of previous research in this area.

4.1 Study area

The present study is based on the Storå river and the SKÆRUM BRO discharge station

(Figure 7). Vandkraftsøen is the large dam on the Storå river near the town Holstebro.

It was built in 1941 for hydropower generation, but now it's partially used to manage

the floods in the area. This dam and downstream of the river are famous for water

sports like kayaking and canoeing. The river has flooding problems near the town of

Holstebro and surrounding areas. The river originates between Silkeborg and

Herning from a small town named Ikast, spanning over 104 kilometers. It's the

second largest river in Denmark (DHI, 2021). The catchment area of the river is 1,100

km². Figure 7 shows the base map of the Storå river along with the discharge &

precipitation stations locations.

Figure 7: Base map of Storå River, Denmark

25

4.2 Climate and Topography

Denmark´s climate is temperate, with an average annual temperature of 8.5oC,

which has increased approximately by 1.5oC since 1873. And during the same period,

the yearly average precipitation has increased by 100 mm, from 650mm per year

before 1950 to 750 mm recently per year. The variation in rainfall and temperature

is shown in Figure 8. Also, Denmark is a low-lying country with the highest altitude of

173m above the mean sea level (EEA, 2020).

Figure 8: Average precipitation(top) and temperature(bottom) in Denmark between 1873-2008. (Source: (EEA,

2020)

26

4.3 Physics-based model

A downscaled hydrologic model (also commonly referred to as the NAM model) is

built by DHI for the whole country, Denmark, using the framework of DHI's global

hydrological model. The current NAM model is developed to provide forecasted

discharge in areas outside of current detailed models. Inputs for the NAM model are

precipitation, temperature, and potential evaporation. Historical weather data is

taken from the Danish meteorological institute (DMI) and forecasted weather data

from IBM, then used in country-wide distributed NAM models in each catchment of

1 Km2. Runoff from each model is kinematically routed through the catchments to

generate discharge simulations and other results from NAM models. This model

operates every hour as it gets the updated real-time measurements and forecasts.

4.4 Data Availability

Observed and modeled discharge time series of the selected points (Figure 9) were

plotted for 2011-2019 and the errors (residuals). Errors are calculated as the

difference between the modeled and observed discharge. We use the observed &

modeled data corresponding to 12:00 & 00:00 of each day in our study.

Data Temporal resolution Period

Observed Discharge 15 mins 2011-2019*(With some

missing data)

Modelled Discharge 12 Hours 2011-2019

Forecasted Precipitation

(ECMWF TIGGE)

12 hours 2011-2016,2018-2019

Observed Precipitation Hourly 2010-2020

*41 days of observed discharge data values are missing, removing those dates in all

other data sets.

27

4.4.1 Discharge (Observed and Modelled)

Observed discharge values are available at 15 mins temporal resolution, but to match

with modeled discharge, Instantaneous observed values were taken corresponding

to the modeled discharge values (I.e., at 00:00 & 12:00 of each day).

4.4.2 Precipitation (Observed and Forecasted)

Figure 7 shows the location of discharge and precipitation stations. Two precipitation

stations (Øby & Grønbjerg) are available near the Skærum Bro discharge station.

THORPEX Interactive Grand Global Ensemble (TIGGE) rainfall forecasts from ECMWF

are available. Forecasted data (TIGGE) is retrieved from ECMWF´s Meteorological

Archival and Retrieval System (MARS) using python.

Figure 9: Modelled and observed discharge time-series at SKÆRUM BRO station for 2011-2019

4.5 Previous research in the study area

DHI performed the Initial research to implement AI and IoT-based prediction of

water levels and flooding for the flood mitigation in Storå River. This project aims

to identify the applicability of AI in flood early warning systems in Storå River

(DHI, 2021). Under the coast-to-coast (C2C) climate challenge project, a pilot

study on the Storå river established jointly by three municipalities (Brande,

Herning, and Holstebro) is under progress. This project aims to examine the

impacts of open area flooding in agricultural areas to minimize the flood risk in

urban areas through stakeholder engagement. (C2CCC, 2018). River restoration

was carried out on Storå river for the length of 0.5 kilometers under the EU-

funded project REFORM (Reformrivers.EU, 2015).

Validation Test

28

Chapter 5 Experimental design

This chapter explains the procedure adopted for evaluating the different data-

driven models for error correction. A brief description of the process and then

details in each step involved follows.

The whole process of error correction using static multi-step ahead error

forecasting for a lead time of 12hrs to 48hrs can be as follows in three main

steps and further sub-phases/stages in each step:

1. The first step involves the data preprocessing, which involves three

phases:

a. The first phase splits the total available data into three different

sets as follows: Training (60%), Validation (20%), and Test (20%)

b. The second phase uses training data to select input variables based

on cross-correlation and average mutual information between

target and candidate variables.

c. The third phase normalizes the data using MinMaxscaler, where

the trained data is used to fit the scaler and then transformed on

train and validation data.

2. The second step deals with the Bayesian optimization, which further has

three stages

a. The first stage optimizes the hyperparameters using optuna

through several trials by fitting the model on 70% of training data

and minimizing the RMSE on the last 30% of training data. This

phase gives the best parameters as output

b. The second stage fits the model using the best parameters from

the previous stage and using complete training data. Then this

model is used to predict the errors on validation data.

c. The Third stage validates the predictions from the model using

performance metrics (R2, RMSE, MAE) on the unseen validation set.

3. Finally, the third step involves testing on the final test set to get unbiased

estimates of the models' performance, which begins after finalizing the

models in the previous step with the best hyperparameters and best

performance on validation data, which involves four phases:

29

a. The first phase in this step involves normalizing the data by fitting

the scaler to 80% of the total data available (i.e., Training +

Validation) and transform it on this new training set and final test

set (20%). Then fit the models with a new training set (80%) and

predict the error on the test set (20%)

b. Then the second phase involves correcting the model simulations

by adding the denormalized forecasted error from different data-

driven models.

c. The third phase involves performance evaluation (R2, RMSE, MAE)

of the corrected simulation concerning the observed discharge in

the overall test set and the high flow events (i.e., > 80 Percentile).

Further, also generate the plots comparing the corrected

discharges with original modeled and observed discharges

d. The final phase involves fitting the model on training data and

predicting the error using training data to check its generalization

ability by comparing it with test results obtained in the previous

phase (3.c).

Figure 10 shows the dataset used in various phases explained above, and Figure

11 outlines the whole procedure in terms of final output at each step.

Figure 10: General evaluation methodology

Data Scaling

Hyperparameter Optimization

(Optuna)

Train the models with optimized hyperparameters.

Evaluation on Validation

Set

Final model evaluation on

Test set

Finding the best hyperparameters

with best validation results

Selection of Input

variables

T
ra

in
in

g
 (

6
0

%
)

V
a

lid
a

ti
o

n
 (

2
0

%
)

T
e

st
in

g
 (

2
0

%
)

30

Corrected Discharge

(t →t+48hrs)

Qm (t →t+48hrs) + Forecasted Errors (t →t+48hrs)

Forecasted Errors (t

→t+48hrs)

Physics-based

model Modelled

Discharge

(Qm(t))

Observed

Discharge

(Qo(t))

Physical

System

Observed

Precipitation

(DMI)

Forecasted

Precipitation

(TIGGE)

Data-driven

models

Error (Et)

(Qo(t)- Qm(t))

Input

Processing Step

Output

Key

Figure 11: Schematic representation of workflow

31

Candidate input variables chosen for this case study includes Observed discharge, Modelled

discharge, Forecast Precipitation, Observed Precipitation, and error at different lags. (See Figure

11)

5.1 Data Preprocessing

Then the first step begins with data preprocessing which includes data splitting, input variable

selection & data scaling.

Abbreviations used in the analysis below

Odt- Observed Discharge at time t

Mdt- Modeled Discharge at time t

Pt- Observed Precipitation at time t

Pt+1- One step ahead forecasted precipitation

Et- Error between modeled and observed discharge at time t

Et= Mdt-Odt

5.1.1 Data Splitting

In our current study, we followed the procedure mentioned in section 3.1. To split our dataset into

three parts while considering the requirement of similar statistical distribution. We divided the

total data available into three splits (Training (60%), Validation (20%), and Test (20%)) in

chronological order. Table 2 shows the timeline of the data in each set after splitting. Table 3

shows the statistical properties of the error time series in different splits used for the current

study.

Table 2: Timeline of the data sets after splitting

Split Timeline

Training Period (60%) 03/01/2011-08/06/2016

Validation Period (20%) 09/06/2016-20/03/2018

Test Period (20%) 21/03/2018-29/12/2019

Table 3: Statistical Properties of error data in different splits (Mean, Min, Max, Std dev, No of samples)

Et Mean Minimum Maximum Standard deviation Number of samples

Training 0.58 -23.21 20.01 2.74 3892.00

Validation 0.82 -10.22 9.98 2.18 1296.00

Test -0.91 -10.86 10.44 2.53 1296.00

32

Figure 12 & Figure 13 shows the time series of the candidate variables in the validation and test

sets, respectively. First, hyperparameters are optimized using the training set. Then a validation

set is used to select the best model with the best hyperparameters. After finalizing the model with

the best hyperparameters with the best validation performance, the test set is used to evaluate

the final model's unbiased evaluation.

Figure 12: Candidate variables time-series at SKÆRUM BRO station (Validation)

Figure 13: Candidate variables time-series at SKÆRUM BRO station (Test)

5.1.2 Input variables selection

Pearson Correlation and Average Mutual Information are used for selecting the input variables,

as explained in section 3.2. Only training data is used in this phase. After few trials with different

combinations of input variables and better validation results, the threshold of 0.2 is determined

for both correlation and AMI.

33

 (Moreido et al., 2021) concluded that in mixed catchments (i.e., Snowmelt and baseflow driven),

It's preferable to allow automatic selection of parameters, but for rainfall-driven catchments, it's

better to go with hydrologists' suggestion. In the current study, the performance of models is

found to be either similar or slightly degraded after using all the variables available.

5.1.3 Data scaling

Data normalization is carried out using a minmax scalar, as explained in section 3.3.

5.2 Hyperparameter tuning.

Hyperparameters define the network structure and decide how the network trains. We tuned

hyperparameters of ML models to minimize the RMSE on the last 30% of training data while fitting

the model using 70% of training data. Pruning callback is used in the optimization, which monitors

the validation loss in each trail and automatically stops the unpromising trials during the training.

Best parameters are then saved to build the final model.

5.2.1 Neural network-based methods

This section describes the procedure adopted to develop two methods (MLP and BLSTM) and

hyperparameter optimization.

1. Multilayer perceptron (MLP)

A simple MLP is developed using the sequential class from Keras ((Chollet, 2015)) & TensorFlow

((Abadi et al., 2016)) which allows us to build a linear stack of layers into the model. A maximum

of 2 hidden layers is considered. Dropout is also used to regularize the model and reduce

overfitting by improving the generalization power, considered a dropout of up to 20% for the

search space.

Here a maximum of 200 epochs are used and Two callbacks (Early Stopping and Model

Checkpoint) to avoid overfitting. Higher epochs improved the training accuracy but degraded the

performance on a validation set. Early Stopping callback monitors the validation loss and

interrupts the model training when there is no improvement depending on the threshold we set

in patience. For MLP, it is determined as 20 by the trial-and-error method. When the validation

loss does not improve continuously for 20 epochs, it halts training. Then Model checkpoint saves

the model weights each time it sees an improvement in validation loss during the training.

34

Root mean square error (RMSE) is chosen as a metric while compiling the model. The optimization

run returns RMSE after every trial in Bayesian optimization, and the process continues to minimize

the RMSE.

Loss functions optimized are Mean square logarithmic error, Huber loss, mean absolute error,

Mean square error, & logcosh. Optimizers considered are Adam, Stochastic Gradient Descent,

RMSprop, as explained in section 3.6.3. Batch Size is optimized in the range of [32,256] with an

interval of 32. Table 4 shows the complete hyperparameter search space used for Bayesian

optimization of multilayer perceptron. Learning curves for MLP are plotted to check the model's

generalization (See Appendix C) at each lead time.

Table 4: Range of hyperparameter values used for multilayer perceptron

Hyperparameters for neural

network

Name Values

1.Number of hidden layers

required

n_layers 1,2

2. Number of neurons

required in hidden layers

n_units_ [1,256]

3.Learning rate Learning_rate [0.001.0.01]

4.Activation function activation_ [tanh, relu]

5.Optimizer Optimizer [Adam, SGD, RMSprop]

6.Dropout dropout_ [0,0.2]

7.epochs Epochs [10,200]

8.Loss Loss [mse, mae, msle, huber,

logcosh]

9.Batch Size batch_size [32, 256], interval=32

2. Bidirectional long-short term memory

A standard Bidirectional LSTM (BLSTM) neural network is trained and tested to predict the error

time series. BLSTM also has similar hyperparameters as explained above for MLP, and In addition

to them, sequence length is also optimized. Some researchers used up to 365 days for sequence

length (Kratzert et al., 2018). Still, it will reduce the training data by one year and increase the

computational burden while tuning the hyperparameters. So, because of time and computational

limits, we limited the sequence length to 5 days. But when tested during validation, using longer

sequence length did not improve the performance. Callbacks (Patience and Model Checkpoints)

and metrics are defined in MLP, except that patience of 40 is used for BLSTM, obtained by trial

and error. Table 5 shows the search space used for hyperparameter tuning. Learning curves

plotted for BLSTM are shown in Appendix D.

35

Table 5: Range of hyperparameter values used for Bidirectional LSTM

Hyperparameters for

BLSTM

Name Values

Tuning the Number of

Epochs

Epochs [10,200]

Tuning the Batch Size Batch_size [32, 256], interval=32

Tuning the Number of

Neurons

n_units_ [1,256]

Number of BLSTM layers n_layers 1,2

Sequence Length seq_length [2,10]

Optimizers Optimizer [Adam, SGD, RMSProp]

Learning rate learning_rate [0.001,0.01]

Loss Loss [mse, mae, msle, huber, logcosh]

Dropout rate dropout_l [0.05,0.2]

5.2.2 Boosting methods

This section describes the procedure adopted for developing tree-boosting machine learning

methods along with hyperparameter optimization. One thousand trials are performed for

boosting techniques (Gradient and Newton) to find a global minimum in optuna.

1. Gradient Boosting

A gradient boosting regressor is developed and for more details on its description and

hyperparameters, see section 3.6.4. Lower values of subsamples help in avoiding the overfitting

 Table 6 shows the hyperparameters and their ranges considered for Bayesian optimization.

Table 6: Range of hyperparameter values used for Gradient boosting

Hyperparameters for

Gradient Boosting

Name Values

Minimum samples required in

a leaf

min_samples_leaf [1,10]

Learning rate learning_rate [0.01,0.1]

Fraction of samples to be

chosen for each tree

Subsample [0,1]

Maximum tree depth max_depth [2,20]

number of boosted trees n_estimators [100,300]

36

2. Newton boosting

The python implementation XGBoost uses the newton boosting approach. For most details on the

approach and hyperparameters, see section 3.6.4. The search for hyperparameters in XGBoost is

performed in two stages. In the first stage, all the parameters except n_estimators are optimized

using Bayesian optimization. Early stopping criteria are used to identify n_estimators

corresponding to optimized hyperparameters in the previous step, which stops when there is no

improvement after ten rounds. Table 7 shows the search space for hyperparameter optimization

in XGBoost.

Table 7: Range of hyperparameter values used for newton boosting (XGBoost)

Hyperparameters tuned for XGBoost Name Values

Subsample ratio of the training

instances

subsample [0.4,0.9]

Maximum tree depth max_depth [4,12]

L1 regularization parameter Alpha [0.01,10]

L2 regularization parameter lambda [1e-8,10]

Minimum loss reduction gamma [0,1]

The minimum data points per leaf min_child_weight [0,5]

Learning rate learning_rate [0.01,0.1]

Number of boosted trees n_estimators [0,600]

Further, a stacking regressor with XGBoost as a base estimator and an autoregressive model as

the final estimator is built to exploit the benefits from both methods.

5.3 Final Testing

Table 8 shows the hyperparameters for 12 hours lead time. For hyperparameters at other lead

times, see Table 17 &

Table 18 for tree-based & deep-learning-based methods, respectively. (in Appendix E). After

finalizing the best models, unbiased estimates of the model's performance are obtained using the

test set. For the hyperparameters variance at different trials in Bayesian optimization, Please see

Appendix B.

37

Table 8: Best hyperparameters for a lead time of 12 hours

Updating Model Optimal Hyperparameters

ANN(MLP) {'learning_rate': 0.0015798028419481372,

 'optimizer': 'Adam',

 'loss': 'msle',

 'epochs': 140,

 'batch_size': 64,

 'n_layers': 1,

 'n_units_l0': 35,

 'activation_l0': 'relu',

 'dropout_l0': 0.0013014518954329451}

XGBoost {'max_depth': 6,

 'learning_rate': 0.09976512440998135,

 'subsample': 0.6714706798105836,

 'alpha': 0.013528920895993416,

 'lambda': 3.5267815447831284e-06, 'n_estimators':60

 'gamma': 0.0007976125851248869,

 'min_child_weight': 0}

Gradient

Boosting

{'max_depth': 13,

 'learning_rate': 0.035092865547259953,

 'subsample': 0.16502226493209313,

 'min_samples_leaf': 2,

 'n_estimators': 158}

BLSTM {'seq_length': 3,

 'learning_rate': 0.007141029339645854,

 'optimizer': 'adam',

 'loss': 'msle',

 'epochs': 195,

 'batch_size': 96,

 'n_layers': 1,

 'n_units_l0': 6,

 'activation_l0': 'tanh',

 'dropout_l0': 0.05791790765558189}

38

Chapter 6 Results

This chapter mainly focuses on the results obtained at various stages of model evaluation

(validation & testing) and includes a discussion on the obtained results in this study.

The best variables in each method were filtered using Pearson Correlation (Figure 14) and

Average mutual Information (Figure 15) for independent variables. By trial-and-error approach,

It is found that the intersection of best variables with a threshold of 0.2 from both ways gave

the best final input variables for the ML models. So, the final variables are Et, Et-1, Et-2, Et-3,

Et-4, Odt, Odt-1, Odt-2, Odt-3, Odt-4. For complete plots on AMI and correlation, see Appendix

A. Figure 15 shows significant autocorrelation in error time series. Figure 14 shows that the top

contributors from AMI are also previous lags from the error time series.

Figure 14: Average mutual information with input parameters Vs. Et+1

Figure 15: Pearson correlation in input parameters vs. Et+1

39

Even though we got better results with this approach, one possible drawback is that a feature

has high non-linear relation to the target. It would get a low correlation and hence be excluded

in this way, even though it might be a good predictor when used in non-linear methods.

6.1 Results on the validation set

The best hyperparameters for the final models are chosen based on the model’s performance

on the validation set. Figure 16 compares results obtained on the validation data at different

lead times and high flow conditions.

Figure 16: Performance statistics on validation data at different lead times

40

Figure 17 shows the comparison of time series plots for corrected discharges at 48 hours lead time. For comparison plots at other

lead times (12,24,36 hours), please refer to Appendix F.

Figure 17: Comparison plots of corrected discharge time series for the validation data at 48 hours lead time

41

Results indicate that all deep learning and tree-based models performed better than the

simple autoregression and persistence models on the overall validation set and high flow

events.

In shorter lead times, performance difference among the models is very less and is only

noticeable in terms of RMSE. And the RMSE of BLSTM is slightly better, indicating its ability to

correct large errors. The comparable results in all the models at the shorter lead time,

especially at 12 hours, could be because of high autocorrelation in error time series at 1st lag.

At high flow conditions, BLSTM and stacked model gave similar results.

However, the model's performance difference is noticeable at longer lead times; the gradient

boosting and stacked model performed similarly and are slightly better than other models.

But the improvement is very little at high flow conditions at longer lead times, and all the tree-

based and deep learning models performed similarly.

Even though all the models successfully improve the model simulations after correction on

the overall validation set, simple models (i.e., Persistence and Autoregression) could not

improve the simulations at longer lead times in high flow conditions.

6.2 Results on the final testing set

Results in this section are obtained on evaluating the independent test set (20%), which is not

used anywhere in finalizing the model parameters or training. Table 9 & Table 10 show the

RMSE values obtained from different models at various lead times on training and test data,

respectively. Further, the three performance evaluation statistics (R2, MAE, & RMSE) on the

training set and test set are also plotted in Figure 18 & Figure 19, respectively. Results indicate

that gradient boosting and XGBoost are slightly are overfitting in shorter lead times. But the

results on the test set using the XGBoost and gradient boosting are comparable with other

models with marginal underperformance at these times.

Table 9: RMSE obtained on training dataset at different lead times

Model 12 hours 24 hours 36 hours 48 hours

AR 1.03 1.47 1.82 2.07

PERS 1.08 1.59 2.03 2.37

MLP 0.92 1.21 1.57 1.80

Gradient Boosting 0.61 1.22 1.49 1.68

XGBoost 0.53 0.88 1.57 1.91

BLSTM 0.82 1.22 1.61 1.79

Stacking 0.69 1.14 1.63 1.88

No correction 2.69 2.69 2.69 2.69

42

Table 10: RMSE obtained on the test data set at different lead times.

Model 12 hours 24 hours 36 hours 48 hours

AR 1.00 1.54 1.91 2.17

PERS 1.03 1.63 2.05 2.39

MLP 1.01 1.48 1.81 2.02

Gradient Boosting 1.05 1.54 1.76 1.98

XGBoost 1.06 1.59 1.78 2.12

BLSTM 0.97 1.48 1.85 1.96

Stacking 0.99 1.48 1.77 2.01

No Correction 2.69 2.69 2.69 2.69

Figure 18: Performance statistics on final training data at different lead times.

43

Figure 19: Performance statistics on the test data at different lead times.

Figure 18 and Figure 19 compare the performance statistics (R2, MAE, & RMSE) with the

training and test set, respectively, at the different lead times and high flow conditions.

Performance results on the independent test set at different lead times on test data (Figure

19) show that all the models successfully improve the simulated discharges from the physics-

based model and are like results on the validation set (Figure 16). Since the difference among

the models is less, it's hard to notice all the patterns from the figures alone. Hence percentage

change in performance statistics after error correction relative to originally modeled

discharge is computed further for better understanding.

44

The top two models at each lead time are highlighted in bold, and the negative values in MAE

& RMSE indicate the % decrease in error and positive values in R2. As already highlighted

before, RMSE penalizes the large errors (outliers), and MAE is robust to these outliers.

Table 11, Table 12, & Table 13 shows the percentage change in RMSE, MAE & R2 respectively

for different models and lead times on the overall test set. The top two models at each lead

time are highlighted in bold, and the negative values in MAE & RMSE indicate the % decrease

in error and positive values in R2. As already highlighted before, RMSE penalizes the large

errors (outliers), and MAE is robust to these outliers.

Table 11: Change (%) in RMSE after correction on the test set.

Lead

Time

AR PERS MLP XGBoost Gradient

Boosting

BLSTM Stacked

model

12 -62.90% -61.70% -62.60% -60.50% -61.10% -64.0% -63.30%

24 -42.50% -39.40% -45.10% -40.80% -42.80% -44.90% -45.00%

36 -29.0% -23.60% -32.60% -33.80% -34.30% -31.20% -34.30%

48 -19.20% -11.20% -24.70% -21.10% -26.40% -27.00% -25.20%

Regarding RMSE (Table 11 & Figure 19) on the overall test set, the difference among the

models' performance is less. The BLSTM & stacked model gave comparable results and

performed better than AR & PERS in all the lead times. Further, they performed slightly better

than tree-based models (XGBoost & gradient boosting) at shorter lead times (up to 24 hours).

Gradient boosting gave comparable results with BLSTM & stacked model at longer lead times

(>24 hours), but XGBoost continued to underperform. MLP gave better results than AR, PERS

& XGBoost but marginally underperformed or gave almost comparable results with the BLSTM

& Stacked model. It marginally gave better results than gradient boosting at shorter lead times

but underperformed at longer lead times. Also, both XGBoost and gradient boosting are

slightly underperforming the AR at shorter times. This underperformance in tree-based

methods at shorter lead times is possibly due to the overfitting observed in training data

(Table 9 & Figure 18).

Table 12: Change (%) in MAE after correction on the test set.

Lead

Time

AR PERS MLP XGBoost Gradient

Boosting

BLSTM Stacked

model

12 -66.20% -65.50% -65.00% -64.50% -63.80% -67.30% -66.90%

24 -46.80% -44.70% -48.10% -45.40% -46.60% -46.20% -48.80%

36 -32.90% -30.40% -34.60% -37.20% -37.50% -29.50% -36.80%

48 -23.20% -18.60% -25.10% -23.90% -28.10% -27.90% -26.10%

45

Now comparing MAE results (Table 12&Figure 19), the overall performance trend in models

as observed in RMSE is still intact with slight underperformance of BLSTM at 36 hours lead

time. However, BLSTM performed better than all other models at 48 hours lead time, as

observed in RMSE.

Table 13: Change (%) in R2 after correction on the test set.

Lead

Time

AR PERS MLP XGBoost Gradient

Boosting

BLSTM Stacked

model

12 8.39% 8.31% 8.37% 8.22% 8.26% 8.47% 8.43%

24 6.52% 6.16% 6.80% 6.33% 6.55% 6.77% 6.79%

36 4.83% 4.04% 5.31% 5.45% 5.53% 5.11% 5.52%

48 3.38% 2.05% 4.21% 3.66% 4.45% 4.54% 4.28%

Finally, In terms of R2 (Table 13 & Figure 19), the overall trend in performance is like that

observed in RMSE. But the difference among the models is less.

So overall, test set results showed that the BLSTM and stacked model performed slightly

better than the other models in all lead times. Xgboost and gradient boosting are marginally

underperforming in shorter lead times than traditional methods (AR, PERS&MLP) due to the

overfitting. And at longer lead times, gradient boosting, BLSTM, and stacked model performed

significantly better (~8% in RMSE) than simple methods (AR/Pers) and slightly better (~2% in

RMSE) than MLP but XGBoost slightly underperformed than MLP.

Table 14, Table 15, & Table 16 shows the percentage change in RMSE, MAE & R2, respectively,

for different models and lead times in high flow events.

Table 14: Change (%) in RMSE after correction in high flow events within the test set.

Lead

Time

AR PERS MLP XGBoost Gradient

Boosting

BLSTM Stacked

model

12 -63.7% -62.4% -64.0% -66.1% -64.4% -67.3% -66.6%

24 -40.7% -36.2% -41.5% -40.5% -42.0% -44.2% -44.0%

36 -25.7% -17.8% -26.1% -32.3% -30.4% -31.7% -31.9%

48 -15.5% -3.6% -18.3% -20.4% -22.1% -20.9% -22.6%

46

From RMSE results (Table 14 & Figure 19) at the high flow events, the outperformance of the

BLSTM & stacked model is more clearly visible with comparable results among them. As both

these models consistently performed better than other models. Interestingly, although

gradient boosting and XGBoost marginally underperforming the BLSTM & stacked model, they

performed better than all the traditional methods (AR, PERS & MLP).

Table 15: Change (%) in MAE after correction in high flow events within the test set.

Lead

Time

AR PERS MLP XGBoost Gradient

Boosting

BLSTM Stacked

model

12 -65.50% -64.80% -65.40% -68.50% -66.80% -69.50% -69.00%

24 -43.00% -39.70% -46.20% -42.70% -45.80% -46.20% -46.10%

36 -27.50% -23.70% -27.40% -35.30% -31.80% -35.00% -34.10%

48 -16.60% -8.80% -16.80% -21.10% -22.20% -19.60% -22.60%

Comparing the results from MAE (Table 15 & Figure 19) at the high flow events, While the

similar trend as observed with RMSE is also applicable here, MAE of the BLSTM is slightly

outperforming the other models opposite to its performance on the overall test set.

Table 16: % Change in R2 after correction in high flow events within the test set.

Lead

Time

AR PERS MLP XGBoost Gradient

Boosting

BLSTM Stacked

model

12 18.72% 18.53% 18.77% 19.09% 18.84% 19.26% 19.16%

24 13.85% 12.65% 14.07% 13.81% 14.17% 14.71% 14.66%

36 9.60% 6.96% 9.74% 11.59% 11.04% 11.41% 11.50%

48 6.10% 1.52% 7.09% 7.82% 8.40% 8.00% 8.58%

Comparing the R2 (Table 16 & Figure 19) at the high flow events, similar trends observed above

with RMSE are observed here. But the difference among the models is more noticeable, unlike

the less difference observed on the overall dataset.

Finally, the comparison of time series plots for corrected discharges of the test set at 48 hours

lead time is plotted in Figure 20 to verify the results obtained from performance evaluation

indices. Further, please see Appendix F for the comparison plots for validation and test sets

at the other lead times.

47

Figure 20: Comparison plots of corrected discharge time series at 48 hours lead time on the test set

48

6.3 Discussion on Results

The minimal difference among the model’s performance at shorter lead times is

possibly due to the significant autocorrelation of error time series at the initial lags,

resulting in better performance even with the simple methods like AR & PERS.

Eventually, this autocorrelation diminished with increasing lead time, and non-linear

methods performed better at longer lead times with considerable differences.

Further, The clear outperformance of the novel (ML&DL) methods at high flow events

with all lead times compared to traditional methods could be partly because of the

objective function (RMSE) used in the Bayesian optimization. Since the optimization is

done by minimizing the RMSE, and the RMSE penalizes the large errors, it has a more

prominent role on high flow events leading to better performance in all evaluation

metrics.

(Gauch et al., 2021) studied tree- and lstm-based models for streamflow forecasting

and found that LSTM and XGBoost gave similar accurate results when trained on

smaller datasets; however, LSTM outperformed with larger training data. (Alizadeh et

al., 2021) proposed attention-based LSTM cell post-processor and compared with

Gradient boosting, LSTM, and GRU with deterministic forecasts. They found

comparable results in 3 deep learning techniques, which also performed better than

gradient boosting. The two studies mentioned above are in line with the findings in

the current study, indicating slightly better performance in deep learning-based

techniques. Also, (Lee & Ahn, 2021) proposed a stacking ensemble model for post-

processing streamflow forecasts using quantile regression and showed that it could

be used for short lead times. (Sikorska-Senoner & Quilty, 2021) proposed a conceptual

data-driven approach for error correction ensemble hydrological model simulations,

making it flexible for any DDM. They also tested eight data-driven models and found

out that XGBoost and Random forest gave the best performance. But they did not

consider LSTM in the above study. Our study got slightly better results in XGBoost &

gradient boosting than random forest during validation. So, we dropped random

forest in further analysis. So overall, all the three approaches stacking, tree-based,

and deep learning methods, have shown the potential to improve the discharge

forecasts, which is also observed in the current study.

49

Chapter 7 Conclusions and future scope

This chapter summarizes the conclusions, Followed by the limitation of this study and

the further research recommendations.

7.1 Conclusions

This study evaluated six data-driven models and a naïve model to improve the

forecasts from the physics-based model. For finding the best models,

hyperparameter tuning was performed using Bayesian optimization to minimize the

RMSE. Results on the validation set indicated comparable results with a stacked

model, tree-based, and deep-learning-based methods. Hence all the methods were

chosen for testing on the final independent test set.

The results on the final test set show that all the six data-driven models tested in this

study successfully improved the simulations. However, the Bidirectional LSTM and

Stacked model continuously performed slightly better than other models. Tree-

boosting methods slightly underperformed at the shorter lead times because of the

overfitting. While gradient boosting improved at higher lead times and gave

comparable results with BLSTM & stacked model, XGBoost continues to

underperform slightly but gave better results than AR and PERS & MLP. Also, MLP gave

comparable results with BLSTM & stacked model at shorter lead times but showed

slight underperformance at higher lead times.

At high flow conditions, BLSTM and stacked model gave robust results. Even though

the difference is marginal, they still performed consistently better than all the other

models. Then the tree-based methods (XGBoost & gradient boosting) slightly

underperformed the BLSTM & stacked model but performed better than simple

methods (AR/Pers) and MLP.

 A further highlight in this study is that even though the stacked model is developed

from less computationally expensive methods (XGBoost & AR), it still gave comparable

results with BLSTM.

50

7.2 Limitations & future scope

Finally, this section aims to summarize the limitations of the current study and its

associated future recommendations. Even though the targeted objectives were

achieved, there is still some room for further research to obtain more generalized

results.

The current study is performed only at the outlet point as we have complete data

available for all variables with a longer period at this station. Still, this study can also

be extended to other stations based on data availability. Also, Gauch et al. (2021)

mentioned that the model accuracy increased when they used data from additional

basins to train the model. So, the possibility of training models across the basins to

get improved results can be further explored.

(Todini, 2008) mentioned that the performance of proposed models at rising and

falling limbs is important as the correlations at these key locations may be low. But

these flow regimes are not considered in the current study, which could be further

evaluated.

Extreme flood events may come up with unknown deficiencies that were not

identified by the hydrological model before. Then error models may not accurately

represent the observed and modeled values (Liu et al., 2012). The possible solution

for this challenge is to get sufficiently enough data for the training. Then more

extreme events will be seen by the model during the training. But for ungauged basins

or basins with less data availability, the possibilities of using the data from

hydrologically similar catchments for training can be explored.

Modular models incorporating hydrological knowledge can be explored to account

for human-induced error or external influences like dam releases upstream.

Some studies computed integrated gradients to interpret input variables to

understand their contribution to LSTM, and permutation-based feature selection

approaches can also be explored. Tree-based models have an additional feature to

estimate the importance of input variables which can also be used for input variable

selection. But to maintain uniformity for comparing different DDMs, it is not used for

final input variable selection.

51

Even though the error correction improved the simulation, the remaining (residual)

modeling uncertainty can be quantified using methods like Quantile regression in

conjunction with the machine learning methods. For example, tree-based ensemble

methods can generate quantile regression-based prediction intervals by choosing

quantile loss function and defining one additional hyperparameter(alpha) in the

model. It is also possible with neural networks-based methods by defining a quantile

loss function. But this is not analyzed explicitly in this study due to time constraints.

Extension of XGBoost for probabilistic forecasting is currently available as

XGBoostLSS; this can be evaluated for its capability to generate predictive intervals. In

addition to this, Catboost and NGBoost also give prediction intervals which can also

be explored. Also, the uncertainty associated with the initializing of parameters can

be assessed.

The current study uses a stacking regressor only for XGBoost and AR, but this can also

be tested using multiple models as base estimators. As BLSTM already gave better

results, further improvement can be expected if included in the stacked models.

52

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,

Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: Large-

Scale Machine Learning on Heterogeneous Distributed Systems.

http://arxiv.org/abs/1603.04467

Abrahart, R. J., & See, L. (2000). Comparing neural network and autoregressive moving

average techniques for the provision of continuous river flow forecasts in two

contrasting catchments. Hydrological Processes, 14(11–12), 2157–2172.

https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2157::AID-

HYP57>3.0.CO;2-S

Acharya, S. C., Babel, M. S., Madsen, H., Sisomphon, P., & Shrestha, S. (2020).

Comparison of different quantile regression methods to estimate predictive

hydrological uncertainty in the Upper Chao Phraya River Basin, Thailand. Journal

of Flood Risk Management, 13(1). https://doi.org/10.1111/jfr3.12585

Akbari, M., & Afshar, A. (2014). Similarity-based error prediction approach for real-

time inflow forecasting. Hydrology Research, 45(4–5), 589–602.

https://doi.org/10.2166/nh.2013.098

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-

generation Hyperparameter Optimization Framework. Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

2623–2631. https://doi.org/10.1145/3292500.3330701

Alizadeh, B., Ghaderi Bafti, A., Kamangir, H., Zhang, Y., Wright, D. B., & Franz, K. J.

(2021). A Novel Attention-Based LSTM Cell Post-Processor Coupled with Bayesian

Optimization for Streamow Prediction. Journal of Hydrology, 601(February),

126526. https://doi.org/10.1016/j.jhydrol.2021.126526

Babel, M., Tansar, H., Mark, O., Weesakul, S., & Madsen, H. (2020). Data assimilation

for flow forecasting in urban drainage systems by updating a hydrodynamic

model of Damhusåen Catchment, Copenhagen. Urban Water Journal, 17(10),

847–859. https://doi.org/10.1080/1573062X.2020.1828938

Babovic, V., Caňizares, R., Jensen, H. R., & Klinting, A. (2001). Neural Networks as

Routine for Error Updating of Numerical Models. Journal of Hydraulic

Engineering, 127(3), 181–193. https://doi.org/10.1061/(asce)0733-

9429(2001)127:3(181)

Banik, A., Behera, C., Sarathkumar, T. V., & Goswami, A. K. (2020). Uncertain wind

power forecasting using LSTM-based prediction interval. IET Renewable Power

Generation, 14(14), 2657–2667. https://doi.org/10.1049/iet-rpg.2019.1238

Bogner, K., & Kalas, M. (2008). Error-correction methods and evaluation of an

ensemble based hydrological forecasting system for the Upper Danube

catchment. Atmospheric Science Letters, 9(2), 95–102.

53

https://doi.org/10.1002/asl.180

Bogner, K., & Pappenberger, F. (2011). Multiscale error analysis, correction, and

predictive uncertainty estimation in a flood forecasting system. Water Resources

Research, 47(7), 7524. https://doi.org/10.1029/2010WR009137

Broersen, P. M. T., & Weerts, A. H. (2005). Automatic error correction of Rainfall-Runoff

models in flood forecasting systems. Conference Record - IEEE Instrumentation

and Measurement Technology Conference, 2(May), 963–968.

https://doi.org/10.1109/imtc.2005.1604281

C2CCC. (2018). C2C. C2ccc Website. https://www.c2ccc.eu/english/subprojects/c13-

storaen/

Chen, L., Zhang, Y., Zhou, J., Singh, V. P., Guo, S., & Zhang, J. (2015). Real-time error

correction method combined with combination flood forecasting technique for

improving the accuracy of flood forecasting. Journal of Hydrology, 521, 157–169.

https://doi.org/10.1016/j.jhydrol.2014.11.053

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings

of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785

Chollet, F. (2015). Keras. GitHub. https://github.com/fchollet/keras

Corzo, G. (2009). Hybrid models for hydrological forecasting. In PhD Thesis.

http://repository.tudelft.nl/assets/uuid:78bf7973-25bb-491a-a931-

421973081a23/PHD_THESIS_CORZO-PEREZ.pdf

Corzo, G., & Solomatine, D. (2007a). Baseflow separation techniques for modular

artificial neural network modelling in flow forecasting. Hydrological Sciences

Journal, 52(3), 491–507. https://doi.org/10.1623/hysj.52.3.491

Corzo, G., & Solomatine, D. (2007b). Knowledge-based modularization and global

optimization of artificial neural network models in hydrological forecasting.

Neural Networks, 20(4), 528–536. https://doi.org/10.1016/j.neunet.2007.04.019

DHI. (2021). DHI helps the Danish EPA use AI and IoT to predict flooding on Denmark’s

second largest river. DHI Website.

https://www.dhigroup.com/global/news/2021/03/dhi-helps-the-danish-epa-use-

ai-and-iot-to-predict-flooding-on-denmark’s-second-largest-river

Didrick, N. (2016). Tree Boosting With XGBoost thesis Master. In Undefined (Issue

December).

Dogulu, N., López López, P., Solomatine, D. P., Weerts, A. H., & Shrestha, D. L. (2015).

Estimation of predictive hydrologic uncertainty using the quantile regression and

UNEEC methods and their comparison on contrasting catchments. Hydrology and

Earth System Sciences, 19(7), 3181–3201. https://doi.org/10.5194/hess-19-3181-

2015

EEA. (2020). Denmark climate.

https://www.eea.europa.eu/soer/2010/countries/dk/country-introduction-

denmark

54

Ehlers, L. B., Wani, O., Koch, J., Sonnenborg, T. O., & Refsgaard, J. C. (2019). Using a

simple post-processor to predict residual uncertainty for multiple hydrological

model outputs. Advances in Water Resources, 129(April 2018), 16–30.

https://doi.org/10.1016/j.advwatres.2019.05.003

Ellenson, A., Pei, Y., Wilson, G., Özkan-Haller, H. T., & Fern, X. (2020). An application of

a machine learning algorithm to determine and describe error patterns within

wave model output. Coastal Engineering, 157.

https://doi.org/10.1016/j.coastaleng.2019.103595

Farchi, A., Laloyaux, P., Bonavita, M., & Bocquet, M. (2020). Using machine learning to

correct model error in data assimilation and forecast applications. October.

http://arxiv.org/abs/2010.12605

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors

from mutual information. In Physical Review A (Vol. 33, Issue 2, pp. 1134–1140).

https://doi.org/10.1103/PhysRevA.33.1134

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.

Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data

Analysis, 38(4), 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2

Fu, J. C., Huang, H. Y., Jang, J. H., & Huang, P. H. (2019). River Stage Forecasting Using

Multiple Additive Regression Trees. Water Resources Management, 33(13), 4491–

4507. https://doi.org/10.1007/s11269-019-02357-x

Gauch, M., Mai, J., & Lin, J. (2021). The proper care and feeding of CAMELS: How limited

training data affects streamflow prediction. Environmental Modelling and

Software, 135(November 2020), 104926.

https://doi.org/10.1016/j.envsoft.2020.104926

Goswami, M., O’Connor, K. M., Bhattarai, K. P., & Shamseldin, A. Y. (2005). Assessing

the performance of eight real-time updating models and procedures for the

Brosna River. Hydrology and Earth System Sciences, 9(4), 394–411.

https://doi.org/10.5194/hess-9-394-2005

Hochreiter, S. (1997). Long Short-Term Memory. Neural Computation, 1780(9), 1735–

1780.

Hsu, M. H., Fu, J. C., & Liu, W. C. (2003). Flood routing with real-time stage correction

method for flash flood forecasting in the Tanshui River, Taiwan. Journal of

Hydrology, 283(1–4), 267–280. https://doi.org/10.1016/S0022-1694(03)00274-9

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and

Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Ibrahem Ahmed Osman, A., Najah Ahmed, A., Chow, M. F., Feng Huang, Y., & El-Shafie,

A. (2021). Extreme gradient boosting (Xgboost) model to predict the groundwater

levels in Selangor Malaysia. Ain Shams Engineering Journal, 12(2), 1545–1556.

https://doi.org/10.1016/j.asej.2020.11.011

Jia, X., Willard, J., Karpatne, A., Read, J., Zwart, J., Steinbach, M., & Kumar, V. (2019).

55

Physics guided RNNs for modeling dynamical systems: A case study in simulating

lake temperature profiles. SIAM International Conference on Data Mining, SDM

2019, 558–566. https://doi.org/10.1137/1.9781611975673.63

Kayastha, N., Ye, J., Fenicia, F., Kuzmin, V., & Solomatine, D. P. (2013). Fuzzy committees

of specialized rainfall-runoff models: Further enhancements and tests. Hydrology

and Earth System Sciences, 17(11), 4441–4451. https://doi.org/10.5194/hess-17-

4441-2013

Khu, S. T., Liong, S. Y., Babovic, V., Madsen, H., & Muttil, N. (2001). Genetic

programming and its application in real-time runoff forecasting. Journal of the

American Water Resources Association, 37(2), 439–451.

https://doi.org/10.1111/j.1752-1688.2001.tb00980.x

Klotz, D., Kratzert, F., Gauch, M., Sampson, A. K., Klambauer, G., Hochreiter, S., &

Nearing, G. (2020). Uncertainty Estimation with Deep Learning for Rainfall-Runoff

Modelling. Hydrology and Earth System Sciences Discussions, April, 1–32.

http://arxiv.org/abs/2012.14295

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-runoff

modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth

System Sciences, 22(11), 6005–6022. https://doi.org/10.5194/hess-22-6005-2018

Krzysztofowicz, R., & Kelly, K. S. (2000). Hydrologic uncertainty processor for

probabilistic river stage forecasting. Water Resources Research, 36(11), 3265–

3277. https://doi.org/10.1029/2000WR900108

Lee, D., & Ahn, K. (2021). A stacking ensemble model for hydrological post-processing

to improve streamflow forecasts at medium-range timescales over South Korea.

Journal of Hydrology, 600(February), 126681.

https://doi.org/10.1016/j.jhydrol.2021.126681

Li, Q., Li, C., Yu, H., Qian, J., Hu, L., & Ge, H. (2020). System response curve correction

method of runoff error for real-time flood forecast. Hydrology Research, 51(6),

1312–1331. https://doi.org/10.2166/nh.2020.048

Liang, Z., Huang, Y., Singh, V. P., Hu, Y., Li, B., & Wang, J. (2021). Multi-source error

correction for flood forecasting based on dynamic system response curve

method. Journal of Hydrology, 594(January), 125908.

https://doi.org/10.1016/j.jhydrol.2020.125908

Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H. J., Kumar, S., Moradkhani, H.,

Seo, D. J., Schwanenberg, D., Smith, P., Van Dijk, A. I. J. M., Van Velzen, N., He, M.,

Lee, H., Noh, S. J., Rakovec, O., & Restrepo, P. (2012). Advancing data assimilation

in operational hydrologic forecasting: Progresses, challenges, and emerging

opportunities. Hydrology and Earth System Sciences, 16(10), 3863–3887.

https://doi.org/10.5194/hess-16-3863-2012

López López, P., Verkade, J. S., Weerts, A. H., & Solomatine, D. P. (2014). Alternative

configurations of quantile regression for estimating predictive uncertainty in

water level forecasts for the upper Severn River: A comparison. Hydrology and

56

Earth System Sciences, 18(9), 3411–3428. https://doi.org/10.5194/hess-18-3411-

2014

Lundberg, A. (1982). Combination of a conceptual model and an autoregressive error

model for improving short time forecasting (Eman catchment). Nordic Hydrology,

13(4), 233–246. https://doi.org/10.2166/nh.1982.0019

Madsen, H., & Skotner, C. (2005). Adaptive state updating in real-time river flow

forecasting - A combined filtering and error forecasting procedure. Journal of

Hydrology, 308(1–4), 302–312. https://doi.org/10.1016/j.jhydrol.2004.10.030

McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proceedings

of the 9th Python in Science Conference, 1(Scipy), 56–61.

https://doi.org/10.25080/majora-92bf1922-00a

Moore, R. J. (2007). The PDM rainfall-runoff model. Hydrology and Earth System

Sciences, 11(1), 483–499. https://doi.org/10.5194/hess-11-483-2007

Moreido, V., Gartsman, B., Solomatine, D. P., & Suchilina, Z. (2021). How Well Can

Machine Learning Models Perform without Hydrologists? Application of Rational

Feature Selection to Improve Hydrological Forecasting. Water, 13(12), 1696.

https://doi.org/10.3390/w13121696

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models

part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290.

https://doi.org/10.1016/0022-1694(70)90255-6

Nearing, G., Sampson, A. K., Kratzert, F., & Frame, J. (2020). Post-Processing a

Conceptual Rainfall-Runoff Model with an LSTM.

https://doi.org/10.31223/OSF.IO/53TE4

Papacharalampous, G., Tyralis, H., Langousis, A., Jayawardena, A. W., Sivakumar, B.,

Mamassis, N., Montanari, A., & Koutsoyiannis, D. (2019). Probabilistic Hydrological

Post-Processing at Scale : Water, 2126(ii).

Pedregosa, F., Michel, V., Grisel OLIVIERGRISEL, O., Blondel, M., Prettenhofer, P., Weiss,

R., Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A.,

Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot andÉdouardand,

M., Duchesnay, A., & Duchesnay EDOUARDDUCHESNAY, Fré. (2011). Scikit-learn:

Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg

Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot.

In Journal of Machine Learning Research (Vol. 12). http://scikit-

learn.sourceforge.net.

Pianosi, F., Castelletti, A., Mancusi, L., & Garofalo, E. (2014). Improving flow forecasting

by error correction modelling in altered catchment conditions. Hydrological

Processes, 28(4), 2524–2534. https://doi.org/10.1002/hyp.9788

Prakash, O., Sudheer, K. P., & Srinivasan, K. (2014). Improved higher lead time river

flow forecasts using sequential neural network with error updating. Journal of

Hydrology and Hydromechanics, 62(1), 60–74. https://doi.org/10.2478/johh-2014-

0010

57

Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian

model averaging to calibrate forecast ensembles. Monthly Weather Review,

133(5), 1155–1174. https://doi.org/10.1175/MWR2906.1

Reformrivers.eu. (2015). River restoration. REFORM. https://reformrivers.eu/river-

storå-–-denmark-small-restoration-measure

Refsgaard, J. C. (1997). Validation and intercomparison of different updating

procedures for real-time forecasting. Nordic Hydrology, 28(2), 65–84.

https://doi.org/10.2166/nh.1997.0005

Saeed, A., Li, C., Danish, M., Rubaiee, S., Tang, G., Gan, Z., & Ahmed, A. (2020). Hybrid

bidirectional lstm model for short-term wind speed interval prediction. IEEE

Access, 8, 182283–182294. https://doi.org/10.1109/ACCESS.2020.3027977

Shamseldin, A. Y., & O’Connor, K. M. (2001). A non-linear neural network technique for

updating of river flow forecasts. Hydrology and Earth System Sciences, 5(4), 577–

597. https://doi.org/10.5194/hess-5-577-2001

Shen, J. C., Chang, C. H., Wu, S. J., Hsu, C. T., & Lien, H. C. (2015). Real-time correction

of water stage forecast using combination of forecasted errors by time series

models and Kalman filter method. Stochastic Environmental Research and Risk

Assessment, 29(7), 1903–1920. https://doi.org/10.1007/s00477-015-1074-9

Shrestha, D. L., Kayastha, N., & Solomatine, D. P. (2009). A novel approach to

parameter uncertainty analysis of hydrological models using neural networks.

Hydrology and Earth System Sciences, 13(7), 1235–1248.

https://doi.org/10.5194/hess-13-1235-2009

Shrestha, D. L., & Solomatine, D. P. (2006). Machine learning approaches for

estimation of prediction interval for the model output. Neural Networks, 19(2),

225–235. https://doi.org/10.1016/j.neunet.2006.01.012

Shrestha, D. L., & Solomatine, D. P. (2008). 2008Shrestha.pdf. International Journal of

River Basin Management, 6(2), 109–122.

Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The Performance of LSTM and

BiLSTM in Forecasting Time Series. Proceedings - 2019 IEEE International

Conference on Big Data, Big Data 2019, 3285–3292.

https://doi.org/10.1109/BigData47090.2019.9005997

Sigrist, F. (2021). Gradient and Newton boosting for classification and regression. In

Expert Systems with Applications (Vol. 167).

https://doi.org/10.1016/j.eswa.2020.114080

Sikorska-Senoner, A. E., & Quilty, J. M. (2021). A novel ensemble-based conceptual-

data-driven approach for improved streamflow simulations. Environmental

Modelling & Software, 143(May), 105094.

https://doi.org/10.1016/j.envsoft.2021.105094

Solomatine, D. P. (2017). Data-driven modelling: machine learning, data mining and

knowledge discovery. Lecture Notes, IHE Delft, 141.

Sun, Y., Bao, W., Jiang, P., Ji, X., Gao, S., Xu, Y., Zhang, Q., & Si, W. (2018). Development

58

of Multivariable Dynamic System Response Curve Method for Real-Time Flood

Forecasting Correction. Water Resources Research, 54(7), 4730–4749.

https://doi.org/10.1029/2018WR022555

Todini, E. (2008). A model conditional processor to assess predictive uncertainty in

flood forecasting. International Journal of River Basin Management, 6(2), 123–137.

https://doi.org/10.1080/15715124.2008.9635342

Torres-Rua, A. F., Ticlavilca, A. M., Walker, W. R., & McKee, M. (2012). Machine Learning

Approaches for Error Correction of Hydraulic Simulation Models for Canal Flow

Schemes. Journal of Irrigation and Drainage Engineering, 138(11), 999–1010.

https://doi.org/10.1061/(asce)ir.1943-4774.0000489

Tyralis, H., Papacharalampous, G., Burnetas, A., & Langousis, A. (2019). Hydrological

post-processing using stacked generalization of quantile regression algorithms:

Large-scale application over CONUS. Journal of Hydrology, 577(January), 123957.

https://doi.org/10.1016/j.jhydrol.2019.123957

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure

for efficient numerical computation. Computing in Science and Engineering, 13(2),

22–30. https://doi.org/10.1109/MCSE.2011.37

Wani, O., Beckers, J. V. L., Weerts, A. H., & Solomatine, D. P. (2017). Residual uncertainty

estimation using instance-based learning with applications to hydrologic

forecasting. Hydrology and Earth System Sciences, 21(8), 4021–4036.

https://doi.org/10.5194/hess-21-4021-2017

Watson, P. A. G. (2019). Applying Machine Learning to Improve Simulations of a

Chaotic Dynamical System Using Empirical Error Correction. Journal of Advances

in Modeling Earth Systems, 11(5), 1402–1417.

https://doi.org/10.1029/2018MS001597

Weerts, A. H., Winsemius, H. C., & Verkade, J. S. (2011). Estimation of predictive

hydrological uncertainty using quantile regression: Examples from the National

Flood Forecasting System (England and Wales). Hydrology and Earth System

Sciences, 15(1), 255–265. https://doi.org/10.5194/hess-15-255-2011

Wu, S. J., Lien, H. C., Chang, C. H., & Shen, J. C. (2012). Real-time correction of water

stage forecast during rainstorm events using combination of forecast errors.

Stochastic Environmental Research and Risk Assessment, 26(4), 519–531.

https://doi.org/10.1007/s00477-011-0514-4

Wunsch, A., Liesch, T., & Broda, S. (2021). Groundwater level forecasting with artificial

neural networks: A comparison of long short-term memory (LSTM), convolutional

neural networks (CNNs), and non-linear autoregressive networks with exogenous

input (NARX). Hydrology and Earth System Sciences, 25(3), 1671–1687.

https://doi.org/10.5194/hess-25-1671-2021

Xiong, L., & O’Connor, K. M. (2002). Comparison of four updating models for real-time

river flow forecasting. Hydrological Sciences Journal, 47(4), 621–639.

https://doi.org/10.1080/02626660209492964

59

Yu, P.-S., & Chen, S.-T. (2005). Updating Real-Time Flood Forecasting Using a Fuzzy

Rule-Based Model/Mise à Jour de Prévision de Crue en Temps Réel Grâce à un

Modèle à Base de Règles Floues. Hydrological Sciences Journal, 50(2), 2–278.

https://doi.org/10.1623/hysj.50.2.265.61796

60

Appendices

Appendix A: Comparison of Pearson correlation and Average mutual

information at different lead times

61

62

Appendix B: Distribution plots of hyperparameters in Bayesian

optimization for tree-based and deep learning methods.
Gradient Boosting

12 hours

24 hours

63

Gradient Boosting

36 hours

48 hours

64

XGBoost

12 hours

24 hours

65

XGBoost

36 hours

48 hours

66

ANN

24 hours

12 hours

67

ANN

36 hours

48 hours

68

BLSTM

12 hours

24 hours

36 hours

48 hours

69

Appendix C: Learning curves of ANN at different lead times during

validation and test

70

71

Appendix D: Learning curves of BLSTM at different lead times for

validation and test sets

72

73

Appendix E: Final best hyperparameters for the models evaluated

Table 17: Final best hyperparameters for tree-based and neural network-based methods

 12 hours 24 hours 36 hours 48 hours

XGBoost {'max_depth': 6,

 'learning_rate':

0.09976512440998135,

 'subsample':

0.6714706798105836,

 'alpha':

0.013528920895993416,

 'lambda':

3.5267815447831284e-

06, 'n_estimators':60

 'gamma':

0.0007976125851248869,

 'min_child_weight': 0}

{'max_depth': 8,

 'learning_rate':

0.09982384902621824,

 'subsample':

0.4529709764793954,

 'alpha':

0.010140093256853989,

 'lambda':

1.5078295673336042e-

07, 'n_estimators':33,

 'gamma':

0.0008994193435131781,

 'min_child_weight': 0}

{'max_depth': 6,

 'learning_rate':

0.09089086924986431,

 'subsample':

0.06463720484806382,

 'alpha':

0.04408963914623115,

 'lambda':

0.46938301088901824,

'n_estimators':39,

'gamma':0,

 'min_child_weight': 5}

{'max_depth': 6,

 'learning_rate':

0.09983079154027447,

 'subsample':

0.47630344992475326,

 'alpha':

0.9080283123276469,

 'lambda':

1.6941246182655454,

'n_estimators':95,

 'gamma':

0.09538367105491903,

 'min_child_weight': 5}

Gradient

Boosting

{'max_depth': 13,

 'learning_rate':

0.035092865547259953,

 'subsample':

0.16502226493209313,

 'min_samples_leaf': 2,

 'n_estimators': 158}

{'max_depth': 5,

 'learning_rate':

0.03184503113868548,

 'subsample':

0.04477894948162988,

 'min_samples_leaf': 2,

 'n_estimators': 246}

{'max_depth': 15,

 'learning_rate':

0.029490164484633367,

 'subsample':

0.04724542865430821,

 'min_samples_leaf': 7,

 'n_estimators': 277}

{'max_depth': 10,

 'learning_rate':

0.04366914991680411,

 'subsample':

0.047875027401341676,

 'min_samples_leaf': 9,

 'n_estimators': 156}

Model

Lead

Time

74

Table 18: Final best hyperparameters for neural network-based methods

 12 hours 24 hours 36 hours 48 hours

ANN {'learning_rate':

0.0015798028419481372,

 'optimizer': 'adam',

 'loss': 'msle',

 'epochs': 140,

 'batch_size': 64,

 'n_layers': 1,

 'n_units_l0': 35,

 'activation_l0': 'relu',

 'dropout_l0':

0.0013014518954329451}

{'learning_rate':

0.0022452983732626896,

 'optimizer': 'adam',

 'loss': 'msle',

 'epochs': 200,

 'batch_size': 64,

 'n_layers': 1,

 'n_units_l0': 118,

 'activation_l0': 'relu',

 'dropout_l0':

0.0013014518954329451}

{'learning_rate':

0.002433138709536434,

 'optimizer': 'adam',

 'loss': 'logcosh',

 'epochs': 67,

 'batch_size': 64,

 'n_layers': 1,

 'n_units_l0': 104,

 'activation_l0': 'relu',

 'dropout_l0':

0.004314768089342425}

{'learning_rate':

0.0020650324085196487,

 'optimizer': 'adam',

 'loss': 'mse',

 'epochs': 108,

 'batch_size': 160,

 'n_layers': 1,

 'n_units_l0': 78,

 'activation_l0': 'relu',

 'dropout_l0':

0.048415175080705475}

BLSTM {'seq_length': 3,

 'learning_rate':

0.007141029339645854,

 'optimizer': 'adam',

 'loss': 'msle',

 'epochs': 195,

 'batch_size': 96,

 'n_layers': 1,

 'n_units_l0': 6,

 'activation_l0': 'tanh',

 'dropout_l0':

0.05791790765558189}

{'seq_length': 3,

 'learning_rate':

0.0015542464923596429,

 'optimizer': 'adam',

 'loss': 'msle',

 'epochs': 153,

 'batch_size': 96,

 'n_layers': 2,

 'n_units_l0': 19,

 'activation_l0': 'tanh',

 'dropout_l0':

0.11589575420708235,

 'n_units_l1': 170,

 'activation_l1': 'tanh',

 'dropout_l1':

0.11033620463155927}

{'seq_length': 2,

 'learning_rate':

0.0012494524325071636,

 'optimizer': 'adam',

 'loss': 'logcosh',

 'epochs': 136,

 'batch_size': 96,

 'n_layers': 2,

 'n_units_l0': 42,

 'activation_l0': 'tanh',

 'dropout_l0':

0.14362520285391292,

 'n_units_l1': 223,

 'activation_l1': 'tanh',

 'dropout_l1':

0.0829144604491681}

{'seq_length': 5,

 'learning_rate':

0.006142381627495895,

 'optimizer': 'adam',

 'loss': 'huber',

 'epochs': 41,

 'batch_size': 96,

 'n_layers': 1,

 'n_units_l0': 97,

 'activation_l0': 'tanh',

 'dropout_l0':

0.0760273092979798}

Model

Lead

Time

75

Appendix F: Comparison of corrected discharges at different lead times

Figure 21: Comparison plots of corrected discharge time series at 12 hours lead time on the validation set.

76

Figure 22: Comparison plots of corrected discharge time series at 12 hours lead time on the test set.

77

Figure 23: Comparison plots of corrected discharge time series at 24 hours lead time on the validation set.

78

Figure 24: Comparison plots of corrected discharge time series at 24 hours lead time on the test set.

79

Figure 25: Comparison plots of corrected discharge time series at 36 hours lead time on the validation set.

80

Figure 26: Comparison plots of corrected discharge time series at 36 hours lead time on the test set.

