
 

              

       

 

                                               

 

 

Evaluation of deep-learning and tree-boosting machine 

learning models in automatic error correction of forecasts 

from a physics-based model: A case study on Storå river, 

Denmark. 
 

 

 

 
Master of Science Thesis  

 by  

Sivarama Krishna Reddy Chidepudi 

 
Supervisors 

Dr. Nicola Balbarini (DHI) 

Dr. Laura Frølich (DHI) 

Prof. Niels Schütze (TU Dresden) 

 

Examination Committee 

Prof. Niels Schütze (TU Dresden), Chairman 

Prof. Dimitri Solomatine (IHE Delft) 

Dr. Nicola Balbarini (DHI) 

Dr. Laura Frølich (DHI) 

 
This research is submitted in partial fulfillment of requirements for the  

MSc degree in Hydro Science and Engineering at the  

Technische Universität Dresden, Germany  

 

 

 

Dresden 

20th August 2021 



ii 

 

 

 

Declaration of Independence 
 

I hereby declare that I submitted my MSc thesis to the examination board of the 

department of hydro-science and engineering entitled: 

 

Evaluation of deep-learning and tree-boosting machine 

learning models in automatic error correction of forecasts 

from a physics-based model: A case study on Storå river, 

Denmark. 

I completed this work independently without using any other sources or aids other 

than those specified, and I marked the citations appropriately. 

 

 

 

Dresden: 20/08/2021 

 

 

Sivarama Krishna Reddy Chidepudi 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

Abstract 
 

Accurate real-time flood predictions play a vital role in flood early warning systems, 

which further helps in mitigating the damage and saving lives. Error correction using 

machine learning (ML) in physics-based models (alternatively known as physically-

based models) has been widely considered and recommended in the literature to 

improve forecast accuracy. This study mainly focuses on evaluating the ability of 

novel tree-based ML methods and Bidirectional LSTM (BLSTM) at different lead times 

and high flow conditions. Also, the performance of these methods is compared with 

the traditionally used autoregression (AR), Multilayer perceptron (MLP), and naïve 

models. So overall, we evaluated six data-driven models and one naïve model on 

Storå river to correct the errors in the physics-based model: Two tree-boosting ML 

models (XGBoost, Gradient boosting), two deep learning-based models (MLP, 

BLSTM), and then simple models like autoregression (AR) & persistence (or naïve). 

Then, a stacked model combining XGBoost, and AR is developed and tested. 

Hyperparameter tuning is performed using Bayesian optimization. Results on the 

independent test set show that all the methods can improve the discharge 

simulations from a physics-based model. However, the Bidirectional LSTM and 

stacked model are consistently performed slightly better than other models in all 

lead times. At shorter lead times, tree-boosting approaches marginally 

underperformed. While gradient boosting performed better at longer lead times and 

produced results comparable to BLSTM and stacked models, XGBoost continues to 

underperform but gave better results than AR and PERS & MLP. The BLSTM and 

stacked models performed well under high flow conditions as well. Even though the 

difference is minor, they consistently outperformed all the other models. 

Furthermore, while tree-based methods (XGBoost & gradient boosting) fared 

somewhat worse than BLSTM & stacked model, they outperformed basic methods 

(AR/Pers) and MLP at high flow conditions. One additional key finding in this study is 

that even when the stacked model was built using less computationally intensive 

methods (XGBoost & AR), it produced equivalent results to BLSTM. 
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Conceptual Formulation 
Applying machine learning & deep learning models to mitigate errors in river 

predictions. 

 

Introduction  

High-accuracy flood prediction is important for real-time decision-making, such as 

early warning systems and emergency response planning. Sometimes, errors in 

predictions from physical models increase over time as assumptions underlying the 

physical model change. Automatic monitoring of predictions and subsequent 

observations may enable automatic correction of predictions.  

 

Objectives  

This study investigates the use of deep learning & machine learning models to 

automatically correct predictions from physics-based models based on recent 

predictions and observations. So, as to evaluate whether machine learning & deep 

learning methods can improve predictions from physical models, corrected 

predictions from machine learning methods are compared to the original 

predictions, both with reference to historical observations.  

 

Methodology  

Machine learning methods like artificial neural networks (ANNs) can be used to 

correct predictions of complex systems (e.g., Watson,( 2019)). If the machine learning 

or deep learning models that work well are found, these models can be inspected to 

improve the modeled discharge normally and at high flow conditions. Also, the 

possibilities of combining multiple models are to be assessed. 

 

Expected outcome  

One or more machine learning & deep learning models are trained and tested at a 

site with an available flood model to assess their ability to improve predictions. The 

performance of predictions corrected with machine learning solutions is compared 

with existing flood model predictions.  

 

Required skills  

Experience in Python programming, knowledge of machine learning models. 
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Chapter 1 Introduction 

This chapter introduces the current study with its scope, practical value, and research 

objectives. 

1.1 Purpose 

Accurate real-time flood predictions play a vital role in decision making, as in Early 

warning systems & Emergency response planning. Improved predictions also 

contribute to the enhanced safety of residents and reduced material damage. However, 

errors in predictions from physics-based models can increase over time as assumptions 

underlying the model change. Some of these errors are inevitable due to uncertainties 

in the process. However, recent studies show forecast accuracy can be improved in 

physics-based models using real-time error correction methods (L. Chen et al., 2015; 

Madsen & Skotner, 2005). 

1.2 Background 

Error Correction (updating the output variables) methods widely improve the accuracy 

of flood forecasts(Sun et al., 2018)). Since the beginning of hydrological forecasting, 

many studies have evaluated the potential of error correction methods in the past few 

decades. These studies focused on traditionally used AR Models(Goswami et al., 2005; 

Lundberg, 1982; Refsgaard, 1997; Wu et al., 2012), Neural Network models (Abrahart & 

See, 2000; Prakash et al., 2014), and KNN ((Akbari & Afshar, 2014; Wani et al., 2017).  

1.3 Scope 

Previous works mainly used error correction methods like autoregressive-moving-

average (ARMA) Moore, (2007), Wavelet transforms (Bogner & Kalas, (2008)) & Artificial 

Neural Networks (Babovic et al., (2000); Watson, (2019)) in real-time flood forecasting. 

However, there are still some persistent deficiencies in these methods like deficient 

theoretical basis, truncated forecast period & requirement of additional parameters as 

highlighted in Li et al. (2020). 

With recent advancements in machine learning(ML) & deep-learning(DL), many new 

error correction methods for physics-based models gained traction across various 

fields. Watson (2019) tested error correction (using ANN) in predicting the chaotic 

Lorenz'96 system and highlighted that it's easier to go for error correction than replace 
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the physically-based models. Jia et al. (2018) proposed a Physics-Guided Recurrent 

Neural Networks model (PGRNN) using LSTM and RNN in simulating lake water 

temperature. Ellenson et al. (2020) showed that Bagged regression (BR) successfully 

detected error patterns in wave model outputs. Nearing et al. (2020) implemented a 

post-processing strategy using LSTM on a conceptual model SAC-SMA and found 

improvements in catchments with more snow. However, Siami-Namini et al. (2019) 

showed that BLSTMs outperformed regular LSTMs and ARIMA in time series forecasting 

because of the additional training layer in BLSTM, which improves learning long-term 

dependencies. 

 

In addition to this, novel ML methods like Gradient Boosting regression Tree (GBRT) 

performed well in River Stage Forecasting Fu et al. (2019) and in predicting Mean Wave 

Overtopping Discharge (den Bieman et al., 2020). Moreover, Ibrahem Ahmed Osman et 

al. (2021) showed that the Extreme Gradient Boosting (XGBoost) model outperformed 

the ANN and Support Vector Regression models in predicting groundwater levels. 

Sigrist (2021) showed that Newton boosting performed better than gradient boosting 

in predictive accuracy. So far, BLSTM, GBRT & NBRT were not tested on error correction 

in physics-based models simulating discharge. It would be interesting to try these ML & 

DL methods as earlier ML methods have shown impressive performance in error 

correction. Thus, the main objective in the current study is to develop the framework 

for BLSTM, Newton (XGBoost) & Gradient Boosting regression trees for automatic error 

correction and then evaluate the performance against the traditional autoregressive 

(AR) & ANN models. Further, the possibilities of combining multiple models are to be 

assessed. 

1.4 Research Questions 

Specific research questions related to error correction within the framework of this 

study are as follows: 

• Can the Machine learning model (NBRT, GBRT, BLSTM) improve the performance 

accuracy (R2, RMSE&MAE) over shorter (12hrs) and longer lead times (36-42hrs)? 

• Will this model perform better than the traditionally used AR & ANN models? 

• How will the proposed model, after combining multiple models using stacking 

regressor perform? 

• How will these models perform at high flow conditions? 
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1.5 Innovation 

We evaluated the novel methods in machine learning and deep learning in error 

correction of physics-based models in discharge predictions. 

1.6 Practical Value 

Automatic monitoring of predictions and subsequent observations may enable 

automatic correction of forecasts. Effective error correction leads to more accurate 

real-time flood predictions and operational flow control systems, which helps in 

effective decision making. The current study can also be helpful in flood damage 

mitigation, saving lives, and efficient operation of flow structures (e.g., reservoir). 

Moreover, the machine learning or deep learning models that showed better accuracy 

in higher lead times can replace the traditional methods, delivering better results only 

in shorter lead times. Further, models are tested using the operational physics-based 

model. So, the proposed models that gave better accuracy can directly implement for 

operational flow forecasting. 

1.7 Objective 

This study mainly aims to evaluate the potential of new data-driven models (GBRT, 

NBRT, BLSTM & Stacked model) in error correction of discharge simulations from 

physics-based models.  

1.8 Structure of the thesis 

1st chapter starts with the introduction to the study and briefly describes the purpose 

and practical value along with the primary objective and research questions. Then the 

2nd chapter includes a literature review on the existing methods of error correction and 

improving the forecast accuracy in rainfall-runoff models and uncertainty estimation. 

3rd chapter consists of theoretical aspects of the methods used. Then comes the 4th 

chapter, which describes the case study area details and analysis of the available data. 

5th chapter begins with the experimental design adopted and a brief description of the 

hyperparameter tuning performed in this study. Also, it discusses the approaches 

adopted in developing and testing the models in detail. Followed by the 6th chapter 

highlighting the main results obtained from the models considered and analyses the 

results in the research questions. Finally, the last chapter discusses the conclusions and 

limitations and the future scope of the current study. 
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Chapter 2  Literature Review 

This chapter mainly focuses on the literature review of existing methods for error 

correction. First simple methods like AR are explored, then studies using machine-

learning models are mentioned, followed by the combined approaches.  

2.1 Auto-Regressive (AR) Models 

Lundberg (1982) used a hydrological model (HBV)  in conjunction with an AR error 

model and showed that the AR model considerably improved the short-term forecasts 

while not having much improvement in the long-term forecasts (10 days or more). 

Broersen & Weerts (2005) studied the automatic time series program ARMASA for error 

correction in an HBV-96 hourly model and performed better than AR.  

 

Refsgaard (1997) compared two updating procedures (ARMA & Extended Kalman 

filtering) and concluded that they significantly improve the performance of short-range 

hydrological forecasting. Abrahart & See (2000) compared Neural Network and ARMA 

for continuous river flow forecasting and found similar results in both methods. Xiong 

& O'Connor (2002) evaluated methods for error correction, including AR, ANN, and a 

fuzzy autoregressive threshold, and showed that AR performed better ANN. 

2.1.1 AR models with exogenous input variables 

Shamseldin & O'Connor (2001) tested Non-linear Auto-Regressive exogenous-Input 

Model (NARXM) on simulating discharge forecasts (SMAR) and compared it with Linear 

Auto-Regressive Exogenous-input (ARXM) method and then suggested NARXM as a 

decent alternative to AR models. Goswami et al. (2005) compared eight error updating 

models in discharge forecasts (SMAR) and found them to give relatively good 1-day 

ahead predictions. Still, for higher lead times (6-days ahead), only three models (Non-

linear Auto-Regressive exogenous-Input Model (NARXM), Linear Transfer Function 

(LTF), and Neural Network Updating (NNU)) performed well. They used rainfall 

observations as an ideal representation of rainfall forecasts. 

2.2 Machine Learning models  

Babovic et al. (2000) used ANNs to forecast errors in operational forecasting of current 

speed (MIKE 21) in the Danish Øresund Strait and found these to have good forecast 

skills. Khu et al. (2001) employed genetic programming for error correction in a rainfall-
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runoff model. They found accurate results in predicting runoff for lead times within the 

time of concentration of the catchment. Torres-Rua et al. (2012) used two machine 

learning algorithms, relevance vector machine (RVM) and multilayer perceptron (MLP), 

in a simulation model with its application in canal flow control scheme and found them 

to be efficient in minimizing the error. (Prakash, Sudheer, and Srinivasan (2014)) 

proposed Sequential ANN (SANN) with error updating in river flow forecasting, and the 

results showed that SANN outperforms conventional ANN by providing accurate 

forecasts at higher lead times (up to 8 days ahead). 

 

(Wunsch et al., 2021) compared LSTM, CNN & NARX in groundwater level forecasting 

and found that NARX outperformed the other two when the training period is shorter 

but mentioned that LSTM and CNN could perform better if larger training periods are 

available. 

 

2.3 Combination of approaches & hybrid models 

Yu & Chen (2005) proposed an error correction model using fuzzy rules in a real-time 

flood forecasting system which improved discharge forecasts for one to four hours 

ahead.  Similar results were obtained in real-time river stage correction using the Least 

Squares Method (Hsu, Fu, and Liu, (2003)) & a combination of forecast errors (AR & MA) 

(Wu et al., (2012)). Shen et al. (2015) further incorporated a Kalman filter in the method 

proposed by Wu et al. (2012) and concluded that the accuracy improved on average by 

50%.  

 

Similarly,  Madsen and Skotner (2005) proposed a data assimilation approach using 

hybrid filtering and error correction (Harmonic Error & Autoregressive(AR)) in 

operational flood forecasting (MIKE11). They found significant improvement in forecast 

accuracy for lead times up to 24 h.  

 

Bogner and Kalas (2008) combined wavelet transformations & state-space models for 

error correction in discharge forecasts and found that the timing accuracy of the 

estimates improved.  Further L. Chen et al. (2015) compared different combinations of 

a) real-time flood error correction (FEC) using AR with b) multi-model combination (MC) 

technique. They concluded that a combination of these two methods could increase 

reliability and accuracy. 
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Babel et al. (2020) Implemented a combined filtering and error correction forecast 

method with data assimilation in a physically-based (Urban Drainage) model. They 

found it to have increased forecast skill and lead time. Farchi et al. (2020) proposed a 

hybrid surrogate model by combining data assimilation and machine learning (DNN & 

CNN) for error correction in numerical weather Prediction.  

 

Apart from this, in real-time discharge forecasts,  the system response curve method is 

widely used for error correction. (Li et al., (2020); Liang et al., (2021)) and Pagano et al. 

(2011) proposed a dual-pass error correction technique for long and short-term 

memory corrections.  

2.4 Hydrologic post-processing  

Several studies developed hydrologic post-processors; Krzysztofowicz & Kelly (2000) 

proposed a hydrologic uncertainty processor (HUP) to obtain probabilistic river stage 

forecasts by aggregating all the uncertainties. Raftery et al. (2005) proposed a Bayesian 

model averaging (BMA) based statistical post-processing method to calibrate the 

ensemble forecasts. 

 

Later, Todini (2008) proposed a Model Conditional Processor (MCP), an alternative to 

BMA & HUP for predictive uncertainty assessment. After that, (Bogner & Pappenberger, 

2011) combined HUP with error correction methods to estimate the predictive 

uncertainty in the corrected flow of the flow forecasting system. 

 

Ehlers et al. (2019) tested the k-Nearest Neighbors (kNN)- resampling method to 

generate residual uncertainty estimates and found it to give robust results for 

hydrological variables (e.g., soil moisture, hydraulic head, etc.). 

 

This approach was before tested by Wani et al. ( 2017) for residual uncertainty in 

streamflow forecasting and found the accuracy to be comparable to other techniques 

like uncertainty estimation based on local errors and clustering (UNEEC; (Shrestha & 

Solomatine, 2006, 2008) and Quantile regression (QR; Dogulu et al., 2015; Weerts et al., 

2011). 

 

Tyralis et al. (2019) proposed a new post-processing approach where quantile 

regression is stacked with quantile regression forests to improve probabilistic 

predictions. Acharya et al. (2020) compared different quantile regression methods for 
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hydrological post-processing and found the results similar to earlier studies on QR 

configurations (López López et al., 2014). 

 

Other methodologies adopted in the deep learning framework are: (Klotz et al., 2020) 

tested four strategies (3 Mixture Density Networks and 1 Monte Carlo Dropout) for 

uncertainty estimation in deep learning for rainfall-runoff modeling. Some researchers 

combined the LUBE framework with LSTM to generate prediction intervals in wind 

power forecasting (Banik et al., 2020; Saeed et al., 2020). 

 

2.5 Knowledge-based modular models  

 A modular model (Corzo, 2009) is a model with structural representation using 

particular domain knowledge, also known as a committee machine. (Corzo & 

Solomatine, 2007a) employed three baseflow separation techniques into ANN models 

and found that modular models integrating hydrological knowledge performed better 

than traditional ANN-based models in streamflow forecasting. (Corzo & Solomatine, 

2007b) studied different data partitioning techniques incorporating domain knowledge 

and found that developing local specialized models is effective in predictive modeling.  

 

Further, Kayastha et al. (2013) formed a fuzzy committee model employing specialized 

hydrological models for different flow regimes to minimize the error at high and low 

flow conditions separately and showed that fuzzy committee outperformed the 

individual models.  

 

(Pianosi et al., 2014) proposed an error correction model with a prior classification 

system based on flow condition and forecasted rainfall to identify the source of error 

and then use a data-driven model specific to the classified error source. Further, the 

results from this study show that even the combination of simple classification(if-then) 

and linear correction improved the forecast capabilities of the hydrological model.  
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Chapter 3 Methodology 

This chapter mainly focuses on theoretical aspects of the approaches used during 

developing and evaluating the data-driven models. 

3.1 Data splitting  

 

The primary purpose of data splitting into three sets is to avoid overfitting and evaluate 

the model's performance on unseen data. Specifically, a validation set avoids the 

overfitting of the model and a testing set to verify the model performance on new data 

before putting it into operation. The total available data is split into three sets, as shown 

in Figure 1. Generally, it is required to split these subsets to have similar statistical 

distribution in all (Solomatine, 2017). 

 

 

 

 

 

 

 

 

 

 

 

In this study, splitting is performed as shown in Figure 1, i.e., three different sets in the 

proportion of 60:20:20. In addition to this, especially when there is limited data 

available, there are some other ways of cross-validation. The commonly used approach 

is K-fold cross-validation which splits the whole data into K parts. Each iteration uses 

one subset as a validation set to compute the performance metric by training the 

remaining subsets. Finally, this approach computes the average of all metrics to get the 

overall representation of the model performance. 

 

Like K-fold, another approach called time-series split cross-validation is used in time 

series problems where chronological order must be maintained, and future values 

cannot be used to predict past values. Figure 2 shows the representation of splits in 

this approach. 

Total Available Data 

 

Training set Validation set Testing set  

Figure 1: Categories of data splitting 
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Figure 2: Representation of time series cross-validation 

3.2 Selection of input variables 

 

Input variables selection is a crucial step in building data-driven models for hydrological 

applications. It is not always possible to select all the possible variables even with 

enough data, as it makes the model complex, challenging to interpret, and more prone 

to overfitting. There are several methods to select "important" variables, and the most 

used ones are described below: 

 

Correlation: The Pearson correlation coefficient R, between two variables X and Y, can 

be obtained using the equation ( 1 ). 

 

    

 
𝑅 =

∑ (𝑥𝑖 − �̅�)𝑘
𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑘
𝑖=1  √∑ (𝑦𝑖 − �̅�)2𝑘

𝑖=1

 

 

( 1 ) 

 

It quantifies the linear relationship strength between the observations and forecasts. 

Candidate variables with higher correlation with the target variables should be selected 

for model development. 
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Average mutual information (AMI): The AMI(Fraser & Swinney, 1986; Shrestha et al., 

2009) between two random variables, X and Y, can be computed in equation ( 2 ) 

 

 

 
𝐴𝑀𝐼 = ∑ 𝑃𝑋𝑌(𝑥𝑖 , 𝑦𝑖) log2 ⌊

𝑃𝑋𝑌(𝑥𝑖 , 𝑦𝑖)

𝑃𝑋(𝑥𝑖 )𝑃𝑌( 𝑦𝑖)
⌋

𝑖,𝑗

 
( 2 ) 

 

 

It quantifies the non-linear relationship between two variables. Like correlation, 

variables with high AMI values should be selected. 

 

The selection of important variables has other advantages like reduced training times 

and improved computational efficiency in data-driven models. When there are many 

variables, dimensionality reduction techniques like principal component analysis (PCA) 

are used to develop a few composite variables, also known as features.  

 

In addition to the variable selection methods mentioned above, the tree-based machine 

learning models also have impurity-based feature importance and permutation feature 

importance for input variable selection. 

 

But in our current study, we focused on using simple methods like correlation and AMI 

for selecting the input variables. 

 

3.3 Data scaling 

Scaling of input and output variables can be performed by standardizing or 

normalizing. Scaling of input variables helps in making the learning stable and leads to 

faster convergence. While target variables scaling helps in avoiding the exploding 

gradients problem. Specifically, it helps when the input variables have different units 

and high variance in the values. 

 

 

 

 

 

 

 

Figure  SEQ Figure \* ARABIC 1: Outline for general methodology 

Normalization Standardization 

Data Scaling 
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1. Standard scaler standardizes the data using the mean (𝑥𝑚𝑒𝑎𝑛) and standard 

deviation (𝜎) as shown in equation ( 3 ). 

 

 
𝑥𝑠𝑐𝑎𝑙𝑒 =

(𝑥 − 𝑥𝑚𝑒𝑎𝑛)

𝜎
 

( 3 ) 

 

 

2. Min-max Scaler normalizes the data into the range of (0,1) using the equation 

shown in equation ( 4 ). 

 

 𝑥𝑠𝑐𝑎𝑙𝑒 = (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ( 4 ) 

 

Where 𝑥 and 𝑥𝑠𝑐𝑎𝑙𝑒 Denotes the original and scaled data. 

 

We performed scaling after splitting the data to avoid data leakages in the validation 

and test set. So, we used training data (Known data) to fit the scalar and then transform 

it on validation and test set. 

 

For our current study, we used MinMaxScaler for data scaling (i.e., to normalize 

features). 

 

3.4 Hyperparameter optimization.  

Data-driven models have hyperparameters that need to be set during model 

initialization. They play a crucial role by controlling the overall training behavior of the 

model and significantly impact the model's overall performance. Hence, finding 

hyperparameters that suit our problem requirements is necessary. This process of 

finding the hyperparameters is known as hyperparameter optimization. There are 

several ways for optimizing the hyperparameters as described below: 

 

1. Grid Search 

 This method first divides the domain of the hyperparameters into a discrete grid. Then, 

It evaluates every combination of values in this grid using performance metrics (RMSE, 

MSE, etc.) in a cross-validation set. While this method gives the best group of 

hyperparameters, it is prolonged.  
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2. Random Search 

It is like grid search, but instead of checking all combinations of values as in grid search, 

this approach tests a randomly selected subset of the points in the grid. It may not give 

the best set of values as in grid search but still can provide a good set of values which 

can result in a good model. 

 

3. Bayesian Optimization  

Unlike random and grid search, Bayesian approaches use Bayes' theorem to obtain the 

minimum or maximum of the objective function. This approach develops a probabilistic 

model based on past evaluations. Then uses it to select the hyperparameter set for the 

subsequent assessment. 

 

After testing all the methods mentioned above, we chose Bayesian optimization 

through the python implementation optuna to perform final hyper-parameter tuning. 

Optuna (Akiba et al., (2019)) uses Tree-structured Parzen estimators, also a Bayesian 

optimization form.  

3.5 Performance evaluation measures 

The performance of the models can be quantified using statistical indices/measures. 

The most used performance evaluation indices to estimate the quality of predictions 

from different models are root mean squared error, mean absolute error, & coefficient 

of determination, as described below. 

 

1. Mean Absolute Error (MAE): 

MAE gives the mean absolute difference between the corrected discharge and 

observed discharge, irrespective of sign, and it does not penalize the high errors, unlike 

RMSE. The MAE of corrected model discharges (𝑄𝑡+1𝐶𝑜𝑟𝑟
) at 1 step ahead relative to 

observed discharge (𝑄𝑡+1𝑜𝑏𝑠  ) takes the form of the equation ( 5 ). Values of MAE closer 

to zero are desirable. 

 
𝑀𝐴𝐸 =

1

𝑁
∑ |𝑄𝑡+1𝐶𝑜𝑟𝑟

− 𝑄𝑡+1𝑜𝑏𝑠  |  

𝑛

𝑖=1

 

 

( 5 ) 

 

0 ≤ 𝑀𝐴𝐸 < +∞ 
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2. Root Mean Squared Error (RMSE): 

 

RMSE gives the square root of the mean square error of the corrected discharges, and 

unlike MAE, it penalizes the high errors. More importantly, RMSE has the same units as 

the discharge (m3/s) in our current study. The RMSE of corrected model discharges 

(𝑄𝑡+1𝐶𝑜𝑟𝑟
) at one step ahead, relative to observed discharge (𝑄𝑡+1𝑜𝑏𝑠  ) takes the form of 

the equation ( 6 ). Values of RMSE closer to zero are desirable. 

 

 
𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 =  √

∑ (𝑄𝑡+1𝐶𝑜𝑟𝑟
−𝑄𝑡+1𝑜𝑏𝑠  )2𝑛

𝑖=1

𝑛
 

 

( 6 ) 

 0 ≤ 𝑅𝑀𝑆𝐸 < +∞ 

 

Further to assess the improvement, we used % of reduction in RMSE, which can be 

calculated as the equation ( 7 ). 

 
% 𝐶ℎ𝑎𝑛𝑔𝑒 =  

(𝑁𝑒𝑤 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 
∗ 100 

( 7 ) 

 

In our case study, the new value refers to RMSE obtained from corrected discharges 

from different models. The original value refers to RMSE obtained from simulation 

discharge (i.e., before correction). 

 

3. Coefficient of Determination:  

The Coefficient of Determination (R2) (also referred to as Nash Sutcliffe efficiency (Nash 

& Sutcliffe, 1970)) indicates the closeness of the variable data to the fitted regression 

line. The R2 of corrected model discharges (𝑄𝑡+1𝐶𝑜𝑟𝑟
) at 1 step ahead relative to observed 

discharge (𝑄𝑡+1𝑜𝑏𝑠  ) takes the form of the equation ( 8 ). Values of R2 closer to one are 

desirable. 

     

 𝑅2 =  1 −
∑(𝑄𝑡+1𝐶𝑜𝑟𝑟

−𝑄𝑡+1𝑜𝑏𝑠  )
2

∑(𝑄𝑡+1𝐶𝑜𝑟𝑟
−𝑄𝑡+1𝑚𝑒𝑎𝑛  )2 ( 8 ) 

   

 

−∞ < 𝑅2 ≤ 1 
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4. High flow threshold 

Further to testing the overall dataset, we are also evaluating the performance of the 

models at high flow events. The flow thresholds defined are as follows: High flow 

(Observed discharge > 80 percentile). We are focusing on only high flow events 

separately as it's the priority for the study area. 

 

All the equations mentioned above are adapted and modified from  (Solomatine 2017). 

3.6 Models evaluated 

The main objective here is to evaluate the BLSTM, tree-boosting machine learning 

methods, and stacked models to correct the error in the physics-based model. But the 

traditional models like persistence, AR, and MLP are also evaluated to understand the 

novel methods' performance relative to these traditional methods. The complete list of 

models evaluated and the broad classification is shown in Figure 3, followed by the 

description of each method and the hyperparameters involved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Persistence  

Error Correction 

Data Driven Models 

Boosting methods 
Neural network-

based methods 

Multilayer 

Perceptron 

Bidirectional Long 

Short-Term Memory 

Gradient 

Boosting 

XGBoost (Newton 

Boosting) 

Autoregression Stacking 

Regressor 

(AR+XGBoost

) 

Figure 3: Classification of models 
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3.6.1 Persistence Model 

The persistence model uses the values from the most recent time step available to 

determine the value for the upcoming time step. In other words, the error at time t+i 

(where i is the number of time steps ahead) is equivalent to the error at time t.  

Et+i = Et 

3.6.2 Auto Regressive Model 

The autoregressive model uses values from the previous time steps as an input to 

predict the values for the upcoming time steps with linear regression. A linear 

univariate autoregressive error correction model using four lags:  

Et+i = AR (5) =f (Et, Et-1, Et-2, Et-3, Et-4) 

where i = number of time steps ahead. 

3.6.3 Deep Learning methods 

Two deep learning methods are being studied, one being the simple multilayer 

perceptron and the second one is the Bidirectional LSTM. The detailed description of 

each method, along with the simple LSTM for better understanding, is as follows: 

1. Multilayer Perceptron  

Multilayer Perceptron (MLP) is a commonly used variant of an artificial neural network 

(ANN) interconnected with several nodes (also known as neurons, units, or processing 

elements (PEs)). A simple MLP, as shown in Figure 4, consists of an input layer, an output 

layer, and a hidden layer.  

 

The lines signify connection weights among nodes. The number of nodes present in the 

input layer is equivalent to the size of input features. This layer sends the input features 

(or variables) (xi) to the units in hidden layers without performing any operation. Then 

the nodes in the hidden layer multiply the input using a set of weights. The output value 

will usually obtain using a bounded non-linear transfer function in the hidden layer 

(e.g., ReLU or tanh), which transforms the result.  

 

The number of hidden nodes indicates the network complexity and determines its 

ability to approximate. Finally, the weights are updated using the backpropagation 
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algorithm, which mainly deals with computed errors and propagating them back 

through the network (Solomatine, 2017).  

 

Hyperparameters involved in MLP are hidden layer, hidden units, optimizers, learning 

rate, dropout, epochs, loss functions, batch size, and activation functions. 

 

The hyperparameter "number of epochs" signifies the complete passes the model 

performs during training. 

 

Activation functions in deep learning models allow the model to learn nonlinearity in 

the data. Here we considered two commonly used activation functions for optimization 

as described below: 

 

1. ReLU: Rectified Linear Activation function [0, ∞) 

  

This function returns the input as output when the input is positive and returns zero 

when the input is negative. 

 

2. Tanh: Hyperbolic tangent activation function. Range (-1,1)  

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Optimizers are the algorithms used to modify the attributes (weights and learning rate) 

in MLP to reduce the losses. Here we checked three different optimizers, and 

differences among them are described as follows: 

 

1. Adam 

Adaptive Moment Estimation (also known as Adam) takes adaptive learning rate 

from estimates of first and second-order moments. 

 

2. SGD 

Stochastic Gradient Descent does not change the learning rate during training, 

i.e., it maintains a constant learning rate. 

 

3. RMSprop 

Root Mean Squared Propagation also uses an adaptive learning rate. 
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Figure 4: Schematic representation of multilayer perceptron with one hidden layer (adapted from (Solomatine, 2017) 

Different loss functions penalize the outliers(errors) differently; hence five loss 

functions are optimized within the Bayesian optimization and other hyperparameters 

by choosing the metric (RMSE) as an objective function in this study. 

Table 1 shows the outliers considered in this study and their effect on outliers. 

Table 1: Loss functions 

Loss function Reaction to outliers 

Mean square 

error 

Penalizes the outliers 

heavily 

Mean 

absolute error 

Robust to outliers 

Mean square 

logarithmic 

error 

penalizes underestimates 

more than overestimates 

Huber loss Less sensitive to outliers 

Logcosh Less sensitive to outliers 

 

 

2. Simple LSTM  

LSTM (Alizadeh et al., 2021; Hochreiter, 1997) overcomes vanishing gradient problems 

and long-term dependency by presenting a novel hidden state, named cell state ct, that 

retains the historical information. In addition, LSTM also has internal mechanisms to 

regulate the flow of information in the form of control gates. The gates are named 

forget, input & output gates.
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The flow of information(Alizadeh et al., 2021) in simple LSTM is as depicted in Figure 5 and described below in three steps:  

 

1. In step 1, the forget gate manages the information from the prior cell state 𝑐𝑡−1, which would then be added to the present 

state with the help of element-wise multiplication operator (⊗) in the form as 𝑓𝑡 ⊗ 𝑐𝑡−1 .  This gate gives the binary output 

(0,1) with 0 indicating deletion of all previous information, and one means retaining all the information. 

 

𝑓𝑡 =  𝜎( 𝑊𝑓𝑥𝑡  + 𝑈𝑓ℎ𝑡−1  + 𝑏𝑓 ) 

Figure 5: Schematic representation of simple LSTM information flow at three consecutive timesteps t-1, t, t+1(Modified and adapted from (Alizadeh et al., 2021)). 
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Then in the second step, the present cell state is computed in three phases 

a. The first phase involves converting the values of 𝑥𝑡 and ℎ𝑡−1 into the range of 

(-1,1) to get a new cell state  𝑐ǁ𝑡 using an activation function (tanh). 

 𝑐ǁ𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡  + 𝑈𝑐ℎ𝑡−1  + 𝑏𝑐) 

b. In the second phase, values resulting from the input gate (𝑖𝑡 ) are used to 

reorganize the present cell state 𝑐𝑡  as 𝑖𝑡  ⊗ 𝑐ǁ𝑡 . The input gate regulates both 

the sequence of input data at present (𝑥𝑡) and hidden state information at t-1 

(ℎ𝑡−1), which incorporate into the cell state as: 

𝑖𝑡  =  𝜎(𝑊𝑖𝑥𝑡  + 𝑈𝑖ℎ𝑡−1  + 𝑏𝑖) 

 

c. In the final phase, the new cell state,  𝑐𝑡 is obtained by adding a revised cell 

state in step 1 (𝑓𝑡 ⊗ 𝑐𝑡−1)  with the updated cell state in previous phases 

(2.b) (𝑖𝑡  ⊗  𝑐ǁ𝑡 ). 

𝑐𝑡  =  𝑓𝑡 ⊗ 𝑐𝑡−1  +  𝑖𝑡  ⊗  𝑐ǁ𝑡  

 

In the third and final step, the information in the new cell state that has to pass as an 

output of the present LSTM and the new hidden state to the upcoming cell is 

managed by the output gate (Alizadeh et al., 2021). 

𝑜𝑡  =  𝜎(𝑊𝑜𝑥𝑡  + 𝑈𝑜ℎ 𝑡−1 + 𝑏𝑜) 

ℎ𝑡  =  𝑜 ⊗  𝑡𝑎𝑛ℎ(𝑐𝑡) 

 

Abbreviations used in the above equations: 

W, U: matrix of network weights 

𝑓𝑡, 𝑖𝑡 , 𝑜𝑡: outputs from forget, input, and output gates 

𝑐𝑡  , 𝑐𝑡−1 : Cell states at t and t-1 

𝜎  : Sigmoid function 

ℎ𝑡, ℎ𝑡−1: Current and previous hidden states 

 𝑐ǁ𝑡 : cell candidate value 

b: bias vector
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3. Bidirectional LSTM 

Bidirectional LSTM trains two LSTM models. The first model learns the input 

sequence, i.e., in the forward state, while the second model learns from the opposite 

direction of the input sequence, i.e., through backward states(Saeed et al., 2020), as 

depicted in Figure 6. Both models get merged using the concatenation mechanism 

by default.  In other words, BLSTMs include an additional layer of training data than 

simple LSTMs.  

Moreover, Siami-Namini et al. (2019) showed that BLSTMs outperformed regular 

LSTMs and ARIMA in time series forecasting because of the additional training layer 

in BLSTM, which improves learning long-term dependencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the hyperparameters mentioned in MLP, BLSTM has one other 

parameter, i.e., sequence length helps the model retain more training samples. 

Figure 6: Schematic representation of Bidirectional LSTM (adapted and modified from (Saeed et al., 2020)) 
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3.6.4 Tree-boosting methods 

The current section describes the two tree-boosting machine learning methods 

(Gradient and Newton) of boosting used in this study. 

 

Gradient Boosting(GB) ((Friedman, 2002) is an ensemble machine learning model 

commonly used for regression and classification tasks. GB uses the steepest gradient 

descent to minimize the loss function. The main idea behind these boosting or 

ensemble-based models is to adapt weak learners into strong learners by fitting 

weak learners to the previously evaluated negative gradient vector of the loss 

function. Here, weak learners are the regression trees that have low predictive ability. 

In simple terms, GB is an ensemble method that sequentially includes new models 

to the original ensemble. Specifically, “A new model is trained at each iteration to 

minimize the error of ensemble learned so far” (Papacharalampous et al., 2019). 

 

Hyperparameters in gradient boosting are classified as boosting and tree-specific 

parameters based on their effect on boosting operations and an individual tree, 

respectively. 

1. Tree-specific parameters are min_samples_leaf, max_depth. 

• max_depth; maximum depth in each tree, and  

• min_samples_leaf: minimum number of samples in the leaf node. 

 

2. Boosting parameters are n_estimators, subsample, and learning rate. 

• n_estimators represent the number of trees,  

• learning_rate indicates the contribution of each tree on the final prediction, 

• the sub-sample shows the sample proportion to be used. 

 

XGBoost (T. Chen & Guestrin, ( 2016)) is a scalable tree-boosting machine learning 

system. It solves the minimization of loss function using newton's method, i.e., 

through the second derivative. Hence some researchers called it an implementation 

of newton boosting (Didrick, 2016; Sigrist, 2021). Alternatively, it is an improved 

variant of Gradient boosting with regularization. It uses a more advanced regularized 

model form (L1 & L2) to control over-fitting, resulting in better performance through 

model generalization capabilities. Apart from hyperparameters in gradient boosting, 

XGBoost has L1 & L2 regularisation parameters (alpha and lambda) and gamma, 

which affect the model's performance.  
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(Sigrist, 2021) differentiated the Gradient boosting and newton boosting techniques 

based on the updating steps (“Gradient descent and Second-order newton updates” 

(Sigrist, 2021)) for finding the tree structures. The python package XGBoost 

implements the  Newton boosting and Python library scikit-learn (Pedregosa et al., 

2011) implements  Gradient boosting regressor based on the approach of (Friedman 

2001).  

 

3.6.5 Stacking Regressor  

Stacking regressor is a type of ensemble learning that combines the skills of different 

models to generate final estimates. SR trains all the models considered to make the 

predictions and uses them to generalize the final output. Using stacking regressor, 

we build a new model with XGBoost being the base estimator and autoregressive 

model as the final estimator. 

3.7 Software Used 

The Deep-Learning models are built using TensorFlow ((Abadi et al., 2016)) and Keras 

((Chollet, 2015)). The machine learning framework used is Scikit learn (Pedregosa et 

al., 2011). we prepared all figures using Matplotlib ((Hunter, 2007)), 

Pandas((McKinney, 2010), & NumPy ((Van Der Walt et al., 2011). The random seed 

function enables the models to generate reproducible results. Model development 

is entirely in the form of Jupyter notebooks. 

 

All this work is carried out in python version 3.8.3 using a laptop with hardware 

configurations of   Intel(R) Core (TM) i7-10510U CPU @ 1.80GHz   2.30 GHz and 8GB 

RAM 
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Chapter 4 Case Study: Storå River, Denmark 

This chapter presents details of the case study, including the details of the study area, 

climate and topographical information, details of the physics-based model, and 

available data with some details of previous research in this area. 

4.1 Study area  

The present study is based on the Storå river and the SKÆRUM BRO discharge station 

(Figure 7). Vandkraftsøen is the large dam on the Storå river near the town Holstebro. 

It was built in 1941 for hydropower generation, but now it's partially used to manage 

the floods in the area.  This dam and downstream of the river are famous for water 

sports like kayaking and canoeing. The river has flooding problems near the town of 

Holstebro and surrounding areas. The river originates between Silkeborg and 

Herning from a small town named Ikast, spanning over 104 kilometers. It's the 

second largest river in Denmark (DHI, 2021). The catchment area of the river is 1,100 

km². Figure 7 shows the base map of the Storå river along with the discharge & 

precipitation stations locations. 

 

Figure 7: Base map of Storå River, Denmark  
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4.2 Climate and Topography 

Denmark´s climate is temperate, with an average annual temperature of 8.5oC, 

which has increased approximately by 1.5oC since 1873. And during the same period, 

the yearly average precipitation has increased by 100 mm, from 650mm per year 

before 1950 to 750 mm recently per year. The variation in rainfall and temperature 

is shown in Figure 8. Also, Denmark is a low-lying country with the highest altitude of 

173m above the mean sea level (EEA, 2020).

 
Figure 8: Average precipitation(top) and temperature(bottom) in Denmark between 1873-2008.  (Source: (EEA, 

2020) 
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4.3 Physics-based model  

A downscaled hydrologic model (also commonly referred to as the NAM model) is 

built by DHI for the whole country, Denmark, using the framework of DHI's global 

hydrological model. The current NAM model is developed to provide forecasted 

discharge in areas outside of current detailed models. Inputs for the NAM model are 

precipitation, temperature, and potential evaporation. Historical weather data is 

taken from the Danish meteorological institute (DMI) and forecasted weather data 

from IBM, then used in country-wide distributed NAM models in each catchment of 

1 Km2. Runoff from each model is kinematically routed through the catchments to 

generate discharge simulations and other results from NAM models. This model 

operates every hour as it gets the updated real-time measurements and forecasts. 

4.4 Data Availability  

Observed and modeled discharge time series of the selected points (Figure 9) were 

plotted for 2011-2019 and the errors (residuals). Errors are calculated as the 

difference between the modeled and observed discharge. We use the observed & 

modeled data corresponding to 12:00 & 00:00 of each day in our study. 

 

Data Temporal resolution Period 

Observed Discharge 15 mins 2011-2019*(With some 

missing data) 

Modelled Discharge 12 Hours 2011-2019 

Forecasted Precipitation 

(ECMWF TIGGE) 

12 hours 2011-2016,2018-2019 

Observed Precipitation Hourly 2010-2020 

 

*41 days of observed discharge data values are missing, removing those dates in all 

other data sets. 
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4.4.1 Discharge (Observed and Modelled) 

 

Observed discharge values are available at 15 mins temporal resolution, but to match 

with modeled discharge, Instantaneous observed values were taken corresponding 

to the modeled discharge values (I.e., at 00:00 & 12:00 of each day). 

4.4.2 Precipitation (Observed and Forecasted) 

 

Figure 7 shows the location of discharge and precipitation stations. Two precipitation 

stations (Øby & Grønbjerg) are available near the Skærum Bro discharge station. 

THORPEX Interactive Grand Global Ensemble (TIGGE) rainfall forecasts from ECMWF 

are available. Forecasted data (TIGGE) is retrieved from ECMWF´s Meteorological 

Archival and Retrieval System (MARS) using python. 

 
Figure 9: Modelled and observed discharge time-series at SKÆRUM BRO station for 2011-2019

4.5 Previous research in the study area 

DHI performed the Initial research to implement AI and IoT-based prediction of 

water levels and flooding for the flood mitigation in Storå River. This project aims 

to identify the applicability of AI in flood early warning systems in Storå River   

(DHI, 2021). Under the coast-to-coast (C2C) climate challenge project, a pilot 

study on the Storå river established jointly by three municipalities (Brande, 

Herning, and Holstebro) is under progress. This project aims to examine the 

impacts of open area flooding in agricultural areas to minimize the flood risk in 

urban areas through stakeholder engagement. (C2CCC, 2018). River restoration 

was carried out on Storå river for the length of 0.5 kilometers under the EU-

funded project REFORM (Reformrivers.EU, 2015). 

Validation Test 
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Chapter 5  Experimental design 

This chapter explains the procedure adopted for evaluating the different data-

driven models for error correction. A brief description of the process and then 

details in each step involved follows. 

 

The whole process of error correction using static multi-step ahead error 

forecasting for a lead time of 12hrs to 48hrs can be as follows in three main 

steps and further sub-phases/stages in each step: 

1. The first step involves the data preprocessing, which involves three 

phases: 

a. The first phase splits the total available data into three different 

sets as follows: Training (60%), Validation (20%), and Test (20%) 

b. The second phase uses training data to select input variables based 

on cross-correlation and average mutual information between 

target and candidate variables. 

c. The third phase normalizes the data using MinMaxscaler, where 

the trained data is used to fit the scaler and then transformed on 

train and validation data. 

2. The second step deals with the Bayesian optimization, which further has 

three stages 

a. The first stage optimizes the hyperparameters using optuna 

through several trials by fitting the model on 70% of training data 

and minimizing the RMSE on the last 30% of training data. This 

phase gives the best parameters as output 

b. The second stage fits the model using the best parameters from 

the previous stage and using complete training data. Then this 

model is used to predict the errors on validation data. 

c. The Third stage validates the predictions from the model using 

performance metrics (R2, RMSE, MAE) on the unseen validation set. 

 

3. Finally, the third step involves testing on the final test set to get unbiased 

estimates of the models' performance, which begins after finalizing the 

models in the previous step with the best hyperparameters and best 

performance on validation data, which involves four phases: 
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a. The first phase in this step involves normalizing the data by fitting 

the scaler to 80% of the total data available (i.e., Training + 

Validation) and transform it on this new training set and final test 

set (20%). Then fit the models with a new training set (80%) and 

predict the error on the test set (20%) 

b. Then the second phase involves correcting the model simulations 

by adding the denormalized forecasted error from different data-

driven models.  

c. The third phase involves performance evaluation (R2, RMSE, MAE) 

of the corrected simulation concerning the observed discharge in 

the overall test set and the high flow events (i.e., > 80 Percentile). 

Further, also generate the plots comparing the corrected 

discharges with original modeled and observed discharges 

d. The final phase involves fitting the model on training data and 

predicting the error using training data to check its generalization 

ability by comparing it with test results obtained in the previous 

phase (3.c). 

Figure 10 shows the dataset used in various phases explained above, and Figure 

11 outlines the whole procedure in terms of final output at each step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: General evaluation methodology 
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Figure 11:  Schematic representation of workflow 
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Candidate input variables chosen for this case study includes Observed discharge, Modelled 

discharge, Forecast Precipitation, Observed Precipitation, and error at different lags. (See Figure 

11) 

5.1 Data Preprocessing  

 

Then the first step begins with data preprocessing which includes data splitting, input variable 

selection & data scaling. 

 

Abbreviations used in the analysis below 

Odt- Observed Discharge at time t 

Mdt- Modeled Discharge at time t 

Pt- Observed Precipitation at time t 

Pt+1- One step ahead forecasted precipitation 

Et- Error between modeled and observed discharge at time t 

Et= Mdt-Odt 

5.1.1 Data Splitting 

In our current study, we followed the procedure mentioned in section 3.1. To split our dataset into 

three parts while considering the requirement of similar statistical distribution. We divided the 

total data available into three splits (Training (60%), Validation (20%), and Test (20%)) in 

chronological order. Table 2 shows the timeline of the data in each set after splitting. Table 3 

shows the statistical properties of the error time series in different splits used for the current 

study. 

 

Table 2: Timeline of the data sets after splitting 

Split Timeline 

Training Period (60%) 03/01/2011-08/06/2016 

Validation Period (20%) 09/06/2016-20/03/2018 

Test Period (20%) 21/03/2018-29/12/2019 

 

Table 3: Statistical Properties of error data in different splits (Mean, Min, Max, Std dev, No of samples) 

 

Et Mean Minimum Maximum Standard deviation Number of samples

Training 0.58 -23.21 20.01 2.74 3892.00

Validation 0.82 -10.22 9.98 2.18 1296.00

Test -0.91 -10.86 10.44 2.53 1296.00
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Figure 12 & Figure 13 shows the time series of the candidate variables in the validation and test 

sets, respectively. First, hyperparameters are optimized using the training set. Then a validation 

set is used to select the best model with the best hyperparameters. After finalizing the model with 

the best hyperparameters with the best validation performance, the test set is used to evaluate 

the final model's unbiased evaluation. 

 
Figure 12: Candidate variables time-series at SKÆRUM BRO station (Validation)    

 

Figure 13: Candidate variables time-series at SKÆRUM BRO station (Test) 

5.1.2 Input variables selection  

Pearson Correlation and Average Mutual Information are used for selecting the input variables, 

as explained in section 3.2. Only training data is used in this phase. After few trials with different 

combinations of input variables and better validation results, the threshold of 0.2 is determined 

for both correlation and AMI. 
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 (Moreido et al., 2021) concluded that in mixed catchments (i.e., Snowmelt and baseflow driven), 

It's preferable to allow automatic selection of parameters, but for rainfall-driven catchments, it's 

better to go with hydrologists' suggestion. In the current study, the performance of models is 

found to be either similar or slightly degraded after using all the variables available. 

5.1.3 Data scaling 

Data normalization is carried out using a minmax scalar, as explained in section 3.3. 

5.2 Hyperparameter tuning. 

Hyperparameters define the network structure and decide how the network trains. We tuned 

hyperparameters of ML models to minimize the RMSE on the last 30% of training data while fitting 

the model using 70% of training data. Pruning callback is used in the optimization, which monitors 

the validation loss in each trail and automatically stops the unpromising trials during the training. 

Best parameters are then saved to build the final model. 

5.2.1 Neural network-based methods 

This section describes the procedure adopted to develop two methods (MLP and BLSTM) and 

hyperparameter optimization. 

 

1. Multilayer perceptron (MLP) 

A simple MLP is developed using the sequential class from Keras ((Chollet, 2015)) & TensorFlow 

((Abadi et al., 2016)) which allows us to build a linear stack of layers into the model. A maximum 

of 2 hidden layers is considered. Dropout is also used to regularize the model and reduce 

overfitting by improving the generalization power, considered a dropout of up to 20% for the 

search space. 

 

Here a maximum of 200 epochs are used and Two callbacks (Early Stopping and Model 

Checkpoint) to avoid overfitting. Higher epochs improved the training accuracy but degraded the 

performance on a validation set. Early Stopping callback monitors the validation loss and 

interrupts the model training when there is no improvement depending on the threshold we set 

in patience. For MLP, it is determined as 20 by the trial-and-error method. When the validation 

loss does not improve continuously for 20 epochs, it halts training.  Then Model checkpoint saves 

the model weights each time it sees an improvement in validation loss during the training. 
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Root mean square error (RMSE) is chosen as a metric while compiling the model. The optimization 

run returns RMSE after every trial in Bayesian optimization, and the process continues to minimize 

the RMSE. 

 

Loss functions optimized are Mean square logarithmic error, Huber loss, mean absolute error, 

Mean square error, & logcosh. Optimizers considered are Adam, Stochastic Gradient Descent, 

RMSprop, as explained in section 3.6.3. Batch Size is optimized in the range of [32,256] with an 

interval of 32. Table 4 shows the complete hyperparameter search space used for Bayesian 

optimization of multilayer perceptron. Learning curves for MLP are plotted to check the model's 

generalization (See Appendix C) at each lead time. 

Table 4: Range of hyperparameter values used for multilayer perceptron 

Hyperparameters for neural 

network 

Name Values  

1.Number of hidden layers 

required 

n_layers 1,2 

2. Number of neurons 

required in hidden layers 

n_units_ [1,256] 

3.Learning rate Learning_rate [0.001.0.01] 

4.Activation function activation_ [tanh, relu] 

5.Optimizer Optimizer [Adam, SGD, RMSprop] 

6.Dropout dropout_ [0,0.2] 

7.epochs Epochs [10,200] 

8.Loss  Loss [mse, mae, msle, huber, 

logcosh] 

9.Batch Size batch_size [32, 256], interval=32 

 

2. Bidirectional long-short term memory 

A standard Bidirectional LSTM (BLSTM) neural network is trained and tested to predict the error 

time series. BLSTM also has similar hyperparameters as explained above for MLP, and In addition 

to them, sequence length is also optimized. Some researchers used up to 365 days for sequence 

length (Kratzert et al., 2018). Still, it will reduce the training data by one year and increase the 

computational burden while tuning the hyperparameters. So, because of time and computational 

limits, we limited the sequence length to 5 days. But when tested during validation, using longer 

sequence length did not improve the performance. Callbacks (Patience and Model Checkpoints) 

and metrics are defined in MLP, except that patience of 40 is used for BLSTM, obtained by trial 

and error.  Table 5 shows the search space used for hyperparameter tuning. Learning curves 

plotted for BLSTM are shown in Appendix D. 
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Table 5: Range of hyperparameter values used for Bidirectional LSTM 

Hyperparameters for 

BLSTM 

Name Values 

Tuning the Number of 

Epochs 

Epochs [10,200] 

Tuning the Batch Size Batch_size [32, 256], interval=32 

Tuning the Number of 

Neurons 

n_units_ [1,256] 

Number of BLSTM layers n_layers 1,2 

Sequence Length seq_length [2,10] 

Optimizers Optimizer [Adam, SGD, RMSProp] 

Learning rate learning_rate [0.001,0.01] 

Loss Loss [mse, mae, msle, huber, logcosh] 

Dropout rate dropout_l [0.05,0.2] 

 

5.2.2 Boosting methods 

This section describes the procedure adopted for developing tree-boosting machine learning 

methods along with hyperparameter optimization. One thousand trials are performed for 

boosting techniques (Gradient and Newton) to find a global minimum in optuna.  

 

1. Gradient Boosting  

A gradient boosting regressor is developed and for more details on its description and 

hyperparameters, see section 3.6.4. Lower values of subsamples help in avoiding the overfitting 

 Table 6 shows the hyperparameters and their ranges considered for Bayesian optimization.  

Table 6: Range of hyperparameter values used for Gradient boosting 

Hyperparameters for 

Gradient Boosting 

Name Values 

Minimum samples required in 

a leaf  

min_samples_leaf [1,10] 

Learning rate learning_rate [0.01,0.1] 

Fraction of samples to be 

chosen for each tree 

Subsample [0,1] 

Maximum tree depth max_depth [2,20] 

number of boosted trees n_estimators [100,300] 
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2. Newton boosting 

The python implementation XGBoost uses the newton boosting approach. For most details on the 

approach and hyperparameters, see section 3.6.4. The search for hyperparameters in XGBoost is 

performed in two stages. In the first stage, all the parameters except n_estimators are optimized 

using Bayesian optimization. Early stopping criteria are used to identify n_estimators 

corresponding to optimized hyperparameters in the previous step, which stops when there is no 

improvement after ten rounds. Table 7 shows the search space for hyperparameter optimization 

in XGBoost. 

Table 7: Range of hyperparameter values used for newton boosting (XGBoost) 

Hyperparameters tuned for XGBoost Name Values 

Subsample ratio of the training 

instances 

subsample [0.4,0.9] 

Maximum tree depth max_depth [4,12] 

L1 regularization parameter Alpha [0.01,10] 

L2 regularization parameter lambda [1e-8,10] 

Minimum loss reduction gamma [0,1] 

The minimum data points per leaf min_child_weight [0,5] 

Learning rate learning_rate [0.01,0.1] 

Number of boosted trees n_estimators [0,600] 

 

 

Further, a stacking regressor with XGBoost as a base estimator and an autoregressive model as 

the final estimator is built to exploit the benefits from both methods. 

 

5.3 Final Testing 

 

Table 8 shows the hyperparameters for 12 hours lead time. For hyperparameters at other lead 

times, see Table 17 &  

Table 18 for tree-based & deep-learning-based methods, respectively. (in Appendix E). After 

finalizing the best models, unbiased estimates of the model's performance are obtained using the 

test set. For the hyperparameters variance at different trials in Bayesian optimization, Please see 

Appendix B. 
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Table 8: Best hyperparameters for a lead time of 12 hours 

Updating Model Optimal Hyperparameters 

ANN(MLP) {'learning_rate': 0.0015798028419481372, 

 'optimizer': 'Adam', 

 'loss': 'msle', 

 'epochs': 140, 

 'batch_size': 64, 

 'n_layers': 1, 

 'n_units_l0': 35, 

 'activation_l0': 'relu', 

 'dropout_l0': 0.0013014518954329451} 

XGBoost {'max_depth': 6, 

 'learning_rate': 0.09976512440998135, 

 'subsample': 0.6714706798105836, 

 'alpha': 0.013528920895993416, 

 'lambda': 3.5267815447831284e-06, 'n_estimators':60 

 'gamma': 0.0007976125851248869, 

 'min_child_weight': 0} 

Gradient 

Boosting 

{'max_depth': 13, 

 'learning_rate': 0.035092865547259953, 

 'subsample': 0.16502226493209313, 

 'min_samples_leaf': 2, 

 'n_estimators': 158} 

BLSTM {'seq_length': 3, 

 'learning_rate': 0.007141029339645854, 

 'optimizer': 'adam', 

 'loss': 'msle', 

 'epochs': 195, 

 'batch_size': 96, 

 'n_layers': 1, 

 'n_units_l0': 6, 

 'activation_l0': 'tanh', 

 'dropout_l0': 0.05791790765558189} 
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Chapter 6 Results  

This chapter mainly focuses on the results obtained at various stages of model evaluation 

(validation & testing) and includes a discussion on the obtained results in this study. 

 

The best variables in each method were filtered using Pearson Correlation (Figure 14) and 

Average mutual Information (Figure 15) for independent variables. By trial-and-error approach, 

It is found that the intersection of best variables with a threshold of 0.2 from both ways gave 

the best final input variables for the ML models. So, the final variables are Et, Et-1, Et-2, Et-3, 

Et-4, Odt, Odt-1, Odt-2, Odt-3, Odt-4. For complete plots on AMI and correlation, see Appendix 

A. Figure 15 shows significant autocorrelation in error time series. Figure 14 shows that the top 

contributors from AMI are also previous lags from the error time series. 

 

 
Figure 14: Average mutual information with input parameters Vs. Et+1 

 
Figure 15: Pearson correlation in input parameters vs. Et+1 
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Even though we got better results with this approach, one possible drawback is that a feature 

has high non-linear relation to the target. It would get a low correlation and hence be excluded 

in this way, even though it might be a good predictor when used in non-linear methods. 

6.1 Results on the validation set 

The best hyperparameters for the final models are chosen based on the model’s performance 

on the validation set. Figure 16 compares results obtained on the validation data at different 

lead times and high flow conditions.  

 

 

Figure 16: Performance statistics on validation data at different lead times 
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Figure 17 shows the comparison of time series plots for corrected discharges at 48 hours lead time. For comparison plots at other 

lead times (12,24,36 hours), please refer to Appendix F. 

 

 

 
Figure 17: Comparison plots of corrected discharge time series for the validation data at 48 hours lead time 
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Results indicate that all deep learning and tree-based models performed better than the 

simple autoregression and persistence models on the overall validation set and high flow 

events. 

In shorter lead times, performance difference among the models is very less and is only 

noticeable in terms of RMSE. And the RMSE of BLSTM is slightly better, indicating its ability to 

correct large errors. The comparable results in all the models at the shorter lead time, 

especially at 12 hours, could be because of high autocorrelation in error time series at 1st lag.  

At high flow conditions, BLSTM and stacked model gave similar results.  

 

However, the model's performance difference is noticeable at longer lead times; the gradient 

boosting and stacked model performed similarly and are slightly better than other models. 

But the improvement is very little at high flow conditions at longer lead times, and all the tree-

based and deep learning models performed similarly. 

 

Even though all the models successfully improve the model simulations after correction on 

the overall validation set, simple models (i.e., Persistence and Autoregression) could not 

improve the simulations at longer lead times in high flow conditions. 

6.2 Results on the final testing set 

Results in this section are obtained on evaluating the independent test set (20%), which is not 

used anywhere in finalizing the model parameters or training. Table 9 & Table 10 show the 

RMSE values obtained from different models at various lead times on training and test data, 

respectively. Further, the three performance evaluation statistics (R2, MAE, & RMSE) on the 

training set and test set are also plotted in Figure 18 & Figure 19, respectively. Results indicate 

that gradient boosting and XGBoost are slightly are overfitting in shorter lead times. But the 

results on the test set using the XGBoost and gradient boosting are comparable with other 

models with marginal underperformance at these times.  

Table 9: RMSE obtained on training dataset at different lead times 

Model 12 hours  24 hours 36 hours 48 hours 

AR 1.03 1.47 1.82 2.07 

PERS 1.08 1.59 2.03 2.37 

MLP 0.92 1.21 1.57 1.80 

Gradient Boosting 0.61 1.22 1.49 1.68 

XGBoost 0.53 0.88 1.57 1.91 

BLSTM 0.82 1.22 1.61 1.79 

Stacking 0.69 1.14 1.63 1.88 

No correction 2.69 2.69 2.69 2.69 
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Table 10: RMSE obtained on the test data set at different lead times. 

Model 12 hours  24 hours 36 hours 48 hours 

AR 1.00 1.54 1.91 2.17 

PERS 1.03 1.63 2.05 2.39 

MLP 1.01 1.48 1.81 2.02 

Gradient Boosting 1.05 1.54 1.76 1.98 

XGBoost 1.06 1.59 1.78 2.12 

BLSTM 0.97 1.48 1.85 1.96 

Stacking 0.99 1.48 1.77 2.01 

No Correction 2.69 2.69 2.69 2.69 

 

 
Figure 18: Performance statistics on final training data at different lead times. 
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Figure 19: Performance statistics on the test data at different lead times. 

Figure 18 and Figure 19 compare the performance statistics (R2, MAE, & RMSE) with the 

training and test set, respectively, at the different lead times and high flow conditions. 

Performance results on the independent test set at different lead times on test data (Figure 

19) show that all the models successfully improve the simulated discharges from the physics-

based model and are like results on the validation set (Figure 16). Since the difference among 

the models is less, it's hard to notice all the patterns from the figures alone. Hence percentage 

change in performance statistics after error correction relative to originally modeled 

discharge is computed further for better understanding. 
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The top two models at each lead time are highlighted in bold, and the negative values in MAE 

& RMSE indicate the % decrease in error and positive values in R2. As already highlighted 

before, RMSE penalizes the large errors (outliers), and MAE is robust to these outliers. 

Table 11, Table 12, & Table 13 shows the percentage change in RMSE, MAE & R2 respectively 

for different models and lead times on the overall test set. The top two models at each lead 

time are highlighted in bold, and the negative values in MAE & RMSE indicate the % decrease 

in error and positive values in R2. As already highlighted before, RMSE penalizes the large 

errors (outliers), and MAE is robust to these outliers. 

 

Table 11: Change (%) in RMSE after correction on the test set. 

Lead 

Time 

AR PERS MLP XGBoost Gradient 

Boosting 

BLSTM Stacked 

model 

12 -62.90% -61.70% -62.60% -60.50% -61.10% -64.0% -63.30% 

24 -42.50% -39.40% -45.10% -40.80% -42.80% -44.90% -45.00% 

36 -29.0% -23.60% -32.60% -33.80% -34.30% -31.20% -34.30% 

48 -19.20% -11.20% -24.70% -21.10% -26.40% -27.00% -25.20% 

 

Regarding RMSE (Table 11 & Figure 19) on the overall test set, the difference among the 

models' performance is less. The BLSTM & stacked model gave comparable results and 

performed better than AR & PERS in all the lead times. Further, they performed slightly better 

than tree-based models (XGBoost & gradient boosting) at shorter lead times (up to 24 hours). 

Gradient boosting gave comparable results with BLSTM & stacked model at longer lead times 

(>24 hours), but XGBoost continued to underperform. MLP gave better results than AR, PERS 

& XGBoost but marginally underperformed or gave almost comparable results with the BLSTM 

& Stacked model. It marginally gave better results than gradient boosting at shorter lead times 

but underperformed at longer lead times. Also, both XGBoost and gradient boosting are 

slightly underperforming the AR at shorter times. This underperformance in tree-based 

methods at shorter lead times is possibly due to the overfitting observed in training data 

(Table 9 & Figure 18).  

 

Table 12: Change (%) in MAE after correction on the test set. 

Lead 

Time 

AR PERS MLP XGBoost Gradient 

Boosting 

BLSTM Stacked 

model 

12 -66.20% -65.50% -65.00% -64.50% -63.80% -67.30% -66.90% 

24 -46.80% -44.70% -48.10% -45.40% -46.60% -46.20% -48.80% 

36 -32.90% -30.40% -34.60% -37.20% -37.50% -29.50% -36.80% 

48 -23.20% -18.60% -25.10% -23.90% -28.10% -27.90% -26.10% 
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Now comparing MAE results (Table 12&Figure 19), the overall performance trend in models 

as observed in RMSE is still intact with slight underperformance of BLSTM at 36 hours lead 

time. However, BLSTM performed better than all other models at 48 hours lead time, as 

observed in RMSE. 

 

Table 13: Change (%) in R2 after correction on the test set. 

Lead 

Time 

AR PERS MLP XGBoost Gradient 

Boosting 

BLSTM Stacked 

model 

12 8.39% 8.31% 8.37% 8.22% 8.26% 8.47% 8.43% 

24 6.52% 6.16% 6.80% 6.33% 6.55% 6.77% 6.79% 

36 4.83% 4.04% 5.31% 5.45% 5.53% 5.11% 5.52% 

48 3.38% 2.05% 4.21% 3.66% 4.45% 4.54% 4.28% 

 

 

Finally, In terms of R2 (Table 13 & Figure 19), the overall trend in performance is like that 

observed in RMSE. But the difference among the models is less. 

 

So overall, test set results showed that the BLSTM and stacked model performed slightly 

better than the other models in all lead times. Xgboost and gradient boosting are marginally 

underperforming in shorter lead times than traditional methods (AR, PERS&MLP) due to the 

overfitting. And at longer lead times, gradient boosting, BLSTM, and stacked model performed 

significantly better (~8% in RMSE) than simple methods (AR/Pers) and slightly better (~2% in 

RMSE) than MLP but XGBoost slightly underperformed than MLP.  

 

Table 14, Table 15, & Table 16 shows the percentage change in RMSE, MAE & R2, respectively, 

for different models and lead times in high flow events. 

 

Table 14: Change (%) in RMSE after correction in high flow events within the test set. 

Lead 

Time 

AR PERS MLP XGBoost Gradient 

Boosting 

BLSTM Stacked 

model 

12 -63.7% -62.4% -64.0% -66.1% -64.4% -67.3% -66.6% 

24 -40.7% -36.2% -41.5% -40.5% -42.0% -44.2% -44.0% 

36 -25.7% -17.8% -26.1% -32.3% -30.4% -31.7% -31.9% 

48 -15.5% -3.6% -18.3% -20.4% -22.1% -20.9% -22.6% 
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From RMSE results (Table 14 & Figure 19) at the high flow events, the outperformance of the 

BLSTM & stacked model is more clearly visible with comparable results among them. As both 

these models consistently performed better than other models. Interestingly, although 

gradient boosting and XGBoost marginally underperforming the BLSTM & stacked model, they 

performed better than all the traditional methods (AR, PERS & MLP).  

 
 

Table 15: Change (%) in MAE after correction in high flow events within the test set. 

Lead 

Time 

AR PERS MLP XGBoost Gradient 

Boosting 

BLSTM Stacked 

model 

12 -65.50% -64.80% -65.40% -68.50% -66.80% -69.50% -69.00% 

24 -43.00% -39.70% -46.20% -42.70% -45.80% -46.20% -46.10% 

36 -27.50% -23.70% -27.40% -35.30% -31.80% -35.00% -34.10% 

48 -16.60% -8.80% -16.80% -21.10% -22.20% -19.60% -22.60% 
 

Comparing the results from MAE (Table 15 & Figure 19) at the high flow events, While the 

similar trend as observed with RMSE is also applicable here, MAE of the BLSTM is slightly 

outperforming the other models opposite to its performance on the overall test set.  

 

Table 16: % Change in R2 after correction in high flow events within the test set. 

Lead 

Time 

AR PERS MLP XGBoost Gradient 

Boosting 

BLSTM Stacked 

model 

12 18.72% 18.53% 18.77% 19.09% 18.84% 19.26% 19.16% 

24 13.85% 12.65% 14.07% 13.81% 14.17% 14.71% 14.66% 

36 9.60% 6.96% 9.74% 11.59% 11.04% 11.41% 11.50% 

48 6.10% 1.52% 7.09% 7.82% 8.40% 8.00% 8.58% 

 

Comparing the R2 (Table 16 & Figure 19) at the high flow events, similar trends observed above 

with RMSE are observed here. But the difference among the models is more noticeable, unlike 

the less difference observed on the overall dataset. 

 

Finally, the comparison of time series plots for corrected discharges of the test set at 48 hours 

lead time is plotted in  Figure 20 to verify the results obtained from performance evaluation 

indices. Further, please see Appendix F for the comparison plots for validation and test sets 

at the other lead times.
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Figure 20: Comparison plots of corrected discharge time series at 48 hours lead time on the test set
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6.3 Discussion on Results 

The minimal difference among the model’s performance at shorter lead times is 

possibly due to the significant autocorrelation of error time series at the initial lags, 

resulting in better performance even with the simple methods like AR & PERS. 

Eventually, this autocorrelation diminished with increasing lead time, and non-linear 

methods performed better at longer lead times with considerable differences. 

Further, The clear outperformance of the novel (ML&DL) methods at high flow events 

with all lead times compared to traditional methods could be partly because of the 

objective function (RMSE) used in the Bayesian optimization. Since the optimization is 

done by minimizing the RMSE, and the RMSE penalizes the large errors, it has a more 

prominent role on high flow events leading to better performance in all evaluation 

metrics. 

(Gauch et al., 2021) studied tree- and lstm-based models for streamflow forecasting 

and found that LSTM and XGBoost gave similar accurate results when trained on 

smaller datasets; however, LSTM outperformed with larger training data. (Alizadeh et 

al., 2021) proposed attention-based LSTM cell post-processor and compared with 

Gradient boosting, LSTM, and GRU with deterministic forecasts. They found 

comparable results in 3 deep learning techniques, which also performed better than 

gradient boosting. The two studies mentioned above are in line with the findings in 

the current study, indicating slightly better performance in deep learning-based 

techniques. Also, (Lee & Ahn, 2021) proposed a stacking ensemble model for post-

processing streamflow forecasts using quantile regression and showed that it could 

be used for short lead times. (Sikorska-Senoner & Quilty, 2021) proposed a conceptual 

data-driven approach for error correction ensemble hydrological model simulations, 

making it flexible for any DDM. They also tested eight data-driven models and found 

out that XGBoost and Random forest gave the best performance. But they did not 

consider LSTM in the above study. Our study got slightly better results in XGBoost & 

gradient boosting than random forest during validation. So, we dropped random 

forest in further analysis. So overall, all the three approaches stacking, tree-based, 

and deep learning methods, have shown the potential to improve the discharge 

forecasts, which is also observed in the current study.  
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Chapter 7 Conclusions and future scope 

This chapter summarizes the conclusions, Followed by the limitation of this study and 

the further research recommendations. 

7.1 Conclusions  

This study evaluated six data-driven models and a naïve model to improve the 

forecasts from the physics-based model. For finding the best models, 

hyperparameter tuning was performed using Bayesian optimization to minimize the 

RMSE. Results on the validation set indicated comparable results with a stacked 

model, tree-based, and deep-learning-based methods. Hence all the methods were 

chosen for testing on the final independent test set.  

 

The results on the final test set show that all the six data-driven models tested in this 

study successfully improved the simulations. However, the Bidirectional LSTM and 

Stacked model continuously performed slightly better than other models. Tree-

boosting methods slightly underperformed at the shorter lead times because of the 

overfitting. While gradient boosting improved at higher lead times and gave 

comparable results with BLSTM & stacked model, XGBoost continues to 

underperform slightly but gave better results than AR and PERS & MLP. Also, MLP gave 

comparable results with BLSTM & stacked model at shorter lead times but showed 

slight underperformance at higher lead times. 

 

At high flow conditions, BLSTM and stacked model gave robust results. Even though 

the difference is marginal, they still performed consistently better than all the other 

models. Then the tree-based methods (XGBoost & gradient boosting) slightly 

underperformed the BLSTM & stacked model but performed better than simple 

methods (AR/Pers) and MLP. 

 

 A further highlight in this study is that even though the stacked model is developed 

from less computationally expensive methods (XGBoost & AR), it still gave comparable 

results with BLSTM.  
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7.2 Limitations & future scope 

Finally, this section aims to summarize the limitations of the current study and its 

associated future recommendations. Even though the targeted objectives were 

achieved, there is still some room for further research to obtain more generalized 

results. 

 

The current study is performed only at the outlet point as we have complete data 

available for all variables with a longer period at this station. Still, this study can also 

be extended to other stations based on data availability. Also, Gauch et al. (2021) 

mentioned that the model accuracy increased when they used data from additional 

basins to train the model. So, the possibility of training models across the basins to 

get improved results can be further explored.  

 

(Todini, 2008) mentioned that the performance of proposed models at rising and 

falling limbs is important as the correlations at these key locations may be low. But 

these flow regimes are not considered in the current study, which could be further 

evaluated.   

 

Extreme flood events may come up with unknown deficiencies that were not 

identified by the hydrological model before. Then error models may not accurately 

represent the observed and modeled values (Liu et al., 2012). The possible solution 

for this challenge is to get sufficiently enough data for the training. Then more 

extreme events will be seen by the model during the training. But for ungauged basins 

or basins with less data availability, the possibilities of using the data from 

hydrologically similar catchments for training can be explored. 

    

Modular models incorporating hydrological knowledge can be explored to account 

for human-induced error or external influences like dam releases upstream. 

 

Some studies computed integrated gradients to interpret input variables to 

understand their contribution to LSTM, and permutation-based feature selection 

approaches can also be explored. Tree-based models have an additional feature to 

estimate the importance of input variables which can also be used for input variable 

selection. But to maintain uniformity for comparing different DDMs, it is not used for 

final input variable selection.  



51 

 

 

Even though the error correction improved the simulation, the remaining (residual) 

modeling uncertainty can be quantified using methods like Quantile regression in 

conjunction with the machine learning methods. For example, tree-based ensemble 

methods can generate quantile regression-based prediction intervals by choosing 

quantile loss function and defining one additional hyperparameter(alpha) in the 

model. It is also possible with neural networks-based methods by defining a quantile 

loss function. But this is not analyzed explicitly in this study due to time constraints. 

Extension of XGBoost for probabilistic forecasting is currently available as 

XGBoostLSS; this can be evaluated for its capability to generate predictive intervals. In 

addition to this, Catboost and NGBoost also give prediction intervals which can also 

be explored. Also, the uncertainty associated with the initializing of parameters can 

be assessed. 

 

The current study uses a stacking regressor only for XGBoost and AR, but this can also 

be tested using multiple models as base estimators. As BLSTM already gave better 

results, further improvement can be expected if included in the stacked models. 
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Appendices 

Appendix A: Comparison of Pearson correlation and Average mutual 

information at different lead times
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Appendix B: Distribution plots of hyperparameters in Bayesian 

optimization for tree-based and deep learning methods. 
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Appendix C: Learning curves of ANN at different lead times during 

validation and test
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Appendix D: Learning curves of BLSTM at different lead times for 

validation and test sets 
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Appendix E: Final best hyperparameters for the models evaluated 
 

Table 17: Final best hyperparameters for tree-based and neural network-based methods 

                

 

 12 hours 24 hours 36 hours 48 hours 

XGBoost {'max_depth': 6, 

 'learning_rate': 

0.09976512440998135, 

 'subsample': 

0.6714706798105836, 

 'alpha': 

0.013528920895993416, 

 'lambda': 

3.5267815447831284e-

06, 'n_estimators':60 

 'gamma': 

0.0007976125851248869, 

 'min_child_weight': 0} 

{'max_depth': 8, 

 'learning_rate': 

0.09982384902621824, 

 'subsample': 

0.4529709764793954, 

 'alpha': 

0.010140093256853989, 

 'lambda': 

1.5078295673336042e-

07, 'n_estimators':33, 

 'gamma': 

0.0008994193435131781, 

 'min_child_weight': 0} 

{'max_depth': 6, 

 'learning_rate': 

0.09089086924986431, 

 'subsample': 

0.06463720484806382, 

 'alpha': 

0.04408963914623115, 

 'lambda': 

0.46938301088901824, 

'n_estimators':39, 

'gamma':0, 

 'min_child_weight': 5} 

{'max_depth': 6, 

 'learning_rate': 

0.09983079154027447, 

 'subsample': 

0.47630344992475326, 

 'alpha': 

0.9080283123276469, 

 'lambda': 

1.6941246182655454, 

'n_estimators':95, 

 'gamma': 

0.09538367105491903, 

 'min_child_weight': 5} 

Gradient 

Boosting 

 

{'max_depth': 13, 

 'learning_rate': 

0.035092865547259953, 

 'subsample': 

0.16502226493209313, 

 'min_samples_leaf': 2, 

 'n_estimators': 158} 

{'max_depth': 5, 

 'learning_rate': 

0.03184503113868548, 

 'subsample': 

0.04477894948162988, 

 'min_samples_leaf': 2, 

 'n_estimators': 246} 

{'max_depth': 15, 

 'learning_rate': 

0.029490164484633367, 

 'subsample': 

0.04724542865430821, 

 'min_samples_leaf': 7, 

 'n_estimators': 277} 

{'max_depth': 10, 

 'learning_rate': 

0.04366914991680411, 

 'subsample': 

0.047875027401341676, 

 'min_samples_leaf': 9, 

 'n_estimators': 156} 

 

 

Model 

Lead  

Time 
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Table 18: Final best hyperparameters for neural network-based methods 

 12 hours 24 hours 36 hours 48 hours 

ANN {'learning_rate': 

0.0015798028419481372, 

 'optimizer': 'adam', 

 'loss': 'msle', 

 'epochs': 140, 

 'batch_size': 64, 

 'n_layers': 1, 

 'n_units_l0': 35, 

 'activation_l0': 'relu', 

 'dropout_l0': 

0.0013014518954329451} 

{'learning_rate': 

0.0022452983732626896, 

 'optimizer': 'adam', 

 'loss': 'msle', 

 'epochs': 200, 

 'batch_size': 64, 

 'n_layers': 1, 

 'n_units_l0': 118, 

 'activation_l0': 'relu', 

 'dropout_l0': 

0.0013014518954329451} 

{'learning_rate': 

0.002433138709536434, 

 'optimizer': 'adam', 

 'loss': 'logcosh', 

 'epochs': 67, 

 'batch_size': 64, 

 'n_layers': 1, 

 'n_units_l0': 104, 

 'activation_l0': 'relu', 

 'dropout_l0': 

0.004314768089342425} 

{'learning_rate': 

0.0020650324085196487, 

 'optimizer': 'adam', 

 'loss': 'mse', 

 'epochs': 108, 

 'batch_size': 160, 

 'n_layers': 1, 

 'n_units_l0': 78, 

 'activation_l0': 'relu', 

 'dropout_l0': 

0.048415175080705475} 

BLSTM {'seq_length': 3, 

 'learning_rate': 

0.007141029339645854, 

 'optimizer': 'adam', 

 'loss': 'msle', 

 'epochs': 195, 

 'batch_size': 96, 

 'n_layers': 1, 

 'n_units_l0': 6, 

 'activation_l0': 'tanh', 

 'dropout_l0': 

0.05791790765558189} 

{'seq_length': 3, 

 'learning_rate': 

0.0015542464923596429, 

 'optimizer': 'adam', 

 'loss': 'msle', 

 'epochs': 153, 

 'batch_size': 96, 

 'n_layers': 2, 

 'n_units_l0': 19, 

 'activation_l0': 'tanh', 

 'dropout_l0': 

0.11589575420708235, 

 'n_units_l1': 170, 

 'activation_l1': 'tanh', 

 'dropout_l1': 

0.11033620463155927} 

{'seq_length': 2, 

 'learning_rate': 

0.0012494524325071636, 

 'optimizer': 'adam', 

 'loss': 'logcosh', 

 'epochs': 136, 

 'batch_size': 96, 

 'n_layers': 2, 

 'n_units_l0': 42, 

 'activation_l0': 'tanh', 

 'dropout_l0': 

0.14362520285391292, 

 'n_units_l1': 223, 

 'activation_l1': 'tanh', 

 'dropout_l1': 

0.0829144604491681} 

{'seq_length': 5, 

 'learning_rate': 

0.006142381627495895, 

 'optimizer': 'adam', 

 'loss': 'huber', 

 'epochs': 41, 

 'batch_size': 96, 

 'n_layers': 1, 

 'n_units_l0': 97, 

 'activation_l0': 'tanh', 

 'dropout_l0': 

0.0760273092979798} 

Model 

Lead  

Time 
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Appendix F: Comparison of corrected discharges at different lead times 

 

 

  
Figure 21: Comparison plots of corrected discharge time series at 12 hours lead time on the validation set. 
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Figure 22: Comparison plots of corrected discharge time series at 12 hours lead time on the test set. 
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Figure 23: Comparison plots of corrected discharge time series at 24 hours lead time on the validation set. 
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Figure 24: Comparison plots of corrected discharge time series at 24 hours lead time on the test set. 
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Figure 25: Comparison plots of corrected discharge time series at 36 hours lead time on the validation set. 
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Figure 26: Comparison plots of corrected discharge time series at 36 hours lead time on the test set. 


