123 research outputs found

    Planning Cervical Deformity Surgery Including DJK Prevention Strategies

    Get PDF
    Distal junctional kyphosis (DJK) is a major concern following cervical deformity (CD) correction, leading to failed realignment and revision surgery. In this chapter, we describe our approach to the treatment of cervical deformity and the steps taken to minimize the risk of DJK post-operatively by tailoring the construction to the individual patient. In this chapter, we describe our approach to the treatment of cervical deformity and the steps taken to minimize the risk of DJK post-operatively by tailoring the construction to the individual patient. First we focus on characterization of the baseline deformity. Secondly, we assess our patients clinically. Thirdly, we simulate the correction with the use of novel in-construct measurements. The fourth step is to develop a DJK prevention strategy tailored to the individual. The last step is to perform surgery and check correction during the operation

    Maximizing signal-to-noise ratio in the random mutation capture assay

    Get PDF
    The ‘Random Mutation Capture’ assay allows for the sensitive quantitation of DNA mutations at extremely low mutation frequencies. This method is based on PCR detection of mutations that render the mutated target sequence resistant to restriction enzyme digestion. The original protocol prescribes an end-point dilution to about 0.1 mutant DNA molecules per PCR well, such that the mutation burden can be simply calculated by counting the number of amplified PCR wells. However, the statistical aspects associated with the single molecular nature of this protocol and several other molecular approaches relying on binary (on/off) output can significantly affect the quantification accuracy, and this issue has so far been ignored. The present work proposes a design of experiment (DoE) using statistical modeling and Monte Carlo simulations to obtain a statistically optimal sampling protocol, one that minimizes the coefficient of variance in the measurement estimates. Here, the DoE prescribed a dilution factor at about 1.6 mutant molecules per well. Theoretical results and experimental validation revealed an up to 10-fold improvement in the information obtained per PCR well, i.e. the optimal protocol achieves the same coefficient of variation using one-tenth the number of wells used in the original assay. Additionally, this optimization equally applies to any method that relies on binary detection of a small number of templates

    Development of the Pulmonary Vein and the Systemic Venous Sinus: An Interactive 3D Overview

    Get PDF
    Knowledge of the normal formation of the heart is crucial for the understanding of cardiac pathologies and congenital malformations. The understanding of early cardiac development, however, is complicated because it is inseparably associated with other developmental processes such as embryonic folding, formation of the coelomic cavity, and vascular development. Because of this, it is necessary to integrate morphological and experimental analyses. Morphological insights, however, are limited by the difficulty in communication of complex 3D-processes. Most controversies, in consequence, result from differences in interpretation, rather than observation. An example of such a continuing debate is the development of the pulmonary vein and the systemic venous sinus, or “sinus venosus”. To facilitate understanding, we present a 3D study of the developing venous pole in the chicken embryo, showing our results in a novel interactive fashion, which permits the reader to form an independent opinion. We clarify how the pulmonary vein separates from a greater vascular plexus within the splanchnic mesoderm. The systemic venous sinus, in contrast, develops at the junction between the splanchnic and somatic mesoderm. We discuss our model with respect to normal formation of the heart, congenital cardiac malformations, and the phylogeny of the venous tributaries

    Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects

    Get PDF
    Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs

    A Systematic Classification of the Congenital Bronchopulmonary Vascular Malformations: Dysmorphogeneses of the Primitive Foregut System and the Primitive Aortic Arch System

    Get PDF
    Purpose: We reviewed the cases of 33 patients from our clinic and 142 patients from the literature with congenital bronchopulmonary vascular malformations (BPVM), systematically analyzed the bronchopulmonary airways , pulmonary arterial supplies, and pulmonary venous drainages, and classified these patients by pulmonary malinosculation( PM). Materials and Methods: From January 1990 to January 2007, a total of 33 patients (17 men or boys and 16 women or girls), aged I day to 24 years (median, 2.5 months), with congenital BPVM were included in this study. Profiles of clinical manifestations, chest radiographs, echocardiographs , esophagographs, computer tomography (CT), magnetic resonance imaging (MRI) , magnetic resonance angiography (MRA ), cardiac catheterizations with angiography, contrast bronchographs, bronchoscopies, chromosomal studies, surgeries, and autopsies of these patients were analyzed to confirm the diagnosis of congenital BPVM. A total of 142 cases from the literature were also reviewed and classified similarly. Results: The malformations of our 33 patients can be classified as type A isolated bronchial PM in 13 patients, type B isolated arterial PM in three, type C isolated venous PM in two, type D mixed bronchoarterial PM in five, type F mixed arteriovenous PM in one, and type G mixed bronchoarteriovenous PM in nine. Conclusion: Dysmorphogeneses of the primitive foregut system and the primitive aortic arch system may lead to haphazard malinosculations of the airways, arteries, and veins of the lung. A systematic classification of patients with congenital BPVM is clinically feasible by assessing the three basic bronchovascular systems of the lung independently

    Expression and Function of Ccbe1 in the Chick Early Cardiogenic Regions Are Required for Correct Heart Development

    Get PDF
    During the course of a differential screen to identify transcripts specific for chick heart/hemangioblast precursor cells, we have identified Ccbe1 (Collagen and calcium-binding EGF-like domain 1). While the importance of Ccbe1 for the development of the lymphatic system is now well demonstrated, its role in cardiac formation remained unknown. Here we show by whole-mount in situ hybridization analysis that cCcbe1 mRNA is initially detected in early cardiac progenitors of the two bilateral cardiogenic fields (HH4), and at later stages on the second heart field (HH9-18). Furthermore, cCcbe1 is expressed in multipotent and highly proliferative cardiac progenitors. We characterized the role of cCcbe1 during early cardiogenesis by performing functional studies. Upon morpholino-induced cCcbe1 knockdown, the chick embryos displayed heart malformations, which include aberrant fusion of the heart fields, leading to incomplete terminal differentiation of the cardiomyocytes. cCcbe1 overexpression also resulted in severe heart defects, including cardia bifida. Altogether, our data demonstrate that although cardiac progenitors cells are specified in cCcbe1 morphants, the migration and proliferation of cardiac precursors cells are impaired, suggesting that cCcbe1 is a key gene during early heart development.FCT [SFRH/BD/65628/2009, SFRH/BPD/86497/2012, SFRH/BPD/41081/2007]; F.C.T.B.I. fellowship [PTDC/SAU-BID/114902/ 2009]; FCT; Institute for Biotechnology Bioengineering (Centro Biomedicina Molecular e Celular (IBB/CBME), Laboratorio Associado (LA) in the frame of Project [PestOE/EQB/LA0023/2013]info:eu-repo/semantics/publishedVersio

    Concepts of Cardiac Development in Retrospect

    Get PDF
    Recent research, enabled by powerful molecular techniques, has revolutionized our concepts of cardiac development. It was firmly established that the early heart tube gives rise to the left ventricle only, and that the remainder of the myocardium is recruited from surrounding mesoderm during subsequent development. Also, the cardiac chambers were shown not to be derived from the entire looping heart tube, but only from the myocardium at its outer curvatures. Intriguingly, many years ago, classic experimental embryological studies reached very similar conclusions. However, with the current scientific emphasis on molecular mechanisms, old morphological insights became underexposed. Since cardiac development occurs in an architecturally complex and dynamic fashion, molecular insights can only fully be exploited when placed in a proper morphological context. In this communication we present excerpts of important embryological studies of the pioneers of experimental cardiac embryology of the previous century, to relate insights from the past to current observations

    Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico

    Get PDF
    The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis

    Pepper in a time of crisis: price booms, government subsidies and smallholder response during and after the Asian economic crisis

    No full text
    Beginning in 1997, international prices for black pepper (Piper nigrum L.) boomed for about three years, coinciding with the Asian economic crisis. Smallholders throughout Southeast Asia responded to the price rises by investing more labor into existing pepper gardens as well as planting new gardens. While this is part of an old pattern with such boom-and-bust cash crops, the unique historical circumstance surrounding the most recent boom was the Asian crisis. Here we compare the response of Iban pepper smallholders to this situation on either side of the international border separating Sarawak, Malaysia and West Kalimantan, Indonesia. On both sides, Iban benefited from the higher prices, but many households without productive vines at the onset of high prices were too late as their new gardens had hardly matured before prices fell in 2000. In the study communities, the Iban Kalimantan significantly reduced their labor migration to focus on pepper during the period of high prices, whereas the Sarawak Iban relied on rather specific off-farm income sources in the tourism, off-shore oil and gas industries, and did not significantly alter their pepper cultivation strategies. The mutual buffering capacity of hill rice cultivation and pepper farming described in an earlier study in Sarawak was not evident in the study communities

    Interrupted aortic arch with aortic septal defect

    No full text
    corecore