15 research outputs found

    Activation of class I metabotropic glutamate receptors limits dendritic growth of Purkinje cells in organotypic slice cultures

    No full text
    The development of the dendritic tree of a neuron is a complex process which is thought to be regulated strongly by signals from afferent fibers. We showed previously that the blockade of glutamatergic excitatory neurotransmission has little effect on Purkinje cell dendritic development. We have now studied the effects of glutamate receptor agonists on the development of Purkinje cell dendrites in mouse organotypic slice cultures. The activation of N-methyl-D-aspartate receptors had no major effect on Purkinje cell dendrites and the activation of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptors was strongly excitotoxic so that no analysis of its effects on dendritic development was possible. The activation of metabotropic glutamate receptors led to a very strong inhibition of dendritic growth, resulting in Purkinje cells with very small stubby dendrites. This effect was specific for the activation of class I metabotropic glutamate receptors and could not be reduced by blocking synaptic transmission in the cultures, indicating that it was mediated by receptors present on Purkinje cells. Pharmacological experiments suggest that the signaling pathway involved does not require activation of phospholipase C or protein kinase C. The inhibition of dendritic growth by activation of class I metabotropic glutamate receptor could be a useful negative feedback mechanism for limiting the size of the dendritic tree of Purkinje cells after the establishment of a sufficient number of parallel fiber contacts. This developmental mechanism could protect Purkinje cells from excitotoxic death through excessive release of glutamate from an overload of parallel fiber contacts

    P/Q-type and T-type calcium channels, but not type 3 transient receptor potential cation channels, are involved in inhibition of dendritic growth after chronic metabotropic glutamate receptor type 1 and protein kinase C activation in cerebellar Purkinje cells

    No full text
    The development of a neuronal dendritic tree is modulated both by signals from afferent fibers and by an intrinsic program. We have previously shown that chronic activation of either type 1 metabotropic glutamate receptors (mGluR1s) or protein kinase C (PKC) in organotypic cerebellar slice cultures of mice and rats severely inhibits the growth and development of the Purkinje cell dendritic tree. The signaling events linking receptor activation to the regulation of dendritic growth remain largely unknown. We have studied whether channels allowing the entry of Ca(2+) into Purkinje cells, in particular the type 3 transient receptor potential cation channels (TRPC3s), P/Q-type Ca(2+) channels, and T-type Ca(2+) channels, might be involved in signaling after mGluR1 or PKC stimulation. We show that the inhibition of dendritic growth seen after mGluR1 or PKC stimulation is partially rescued by pharmacological blockade of P/Q-type and T-type Ca(2+) channels, indicating that activation of these channels mediating Ca(2+) influx contributes to the inhibition of dendritic growth. In contrast, the absence of Ca(2+) -permeable TRPC3s in TRPC3-deficient mice or pharmacological blockade had no effect on mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. Similarly, blockade of Ca(2+) influx through glutamate receptor ?2 or R-type Ca(2+) channels or inhibition of release from intracellular stores did not influence mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. These findings suggest that both T-type and P/Q-type Ca(2+) channels, but not TRPC3 or other Ca(2+) -permeable channels, are involved in mGluR1 and PKC signaling leading to the inhibition of dendritic growth in cerebellar Purkinje cells

    A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice

    No full text
    The hereditary ataxias are a complex group of neurological disorders characterized by the degeneration of the cerebellum and its associated connections. The molecular mechanisms that trigger the loss of Purkinje cells in this group of diseases remain incompletely understood. Here, we report a previously undescribed dominant mouse model of cerebellar ataxia, moonwalker (Mwk), that displays motor and coordination defects and loss of cerebellar Purkinje cells. Mwk mice harbor a gain-of-function mutation (T635A) in the Trpc3 gene encoding the nonselective transient receptor potential cation channel, type C3 (TRPC3), resulting in altered TRPC3 channel gating. TRPC3 is highly expressed in Purkinje cells during the phase of dendritogenesis. Interestingly, growth and differentiation of Purkinje cell dendritic arbors are profoundly impaired in Mwk mice. Our findings define a previously unknown role for TRPC3 in both dendritic development and survival of Purkinje cells, and provide a unique mechanism underlying cerebellar ataxia

    Albuminuria and Glomerular Damage in Mice Lacking the Metabotropic Glutamate Receptor 1

    No full text
    The metabotropic glutamate (mGlu) receptor 1 (GRM1) has been shown to play an important role in neuronal cells by triggering, through calcium release from intracellular stores, various signaling pathways that finally modulate neuron excitability, synaptic plasticity, and mechanisms of feedback regulation of neurotransmitter release. Herein, we show that Grm1 is expressed in glomerular podocytes and that a glomerular phenotype is exhibited by Grm1crv4 mice carrying a spontaneous recessive inactivating mutation of the gene. Homozygous Grm1crv4/crv4 and, to a lesser extent, heterozygous mice show albuminuria, podocyte foot process effacement, and reduced levels of nephrin and other proteins known to contribute to the maintenance of podocyte cell structure. Overall, the present data extend the role of mGlu1 receptor to the glomerular filtration barrier. The regulatory action of mGlu1 receptor in dendritic spine morphology and in the control of glutamate release is well acknowledged in neuronal cells. Analogously, we speculate that mGlu1 receptor may regulate foot process morphology and intercellular signaling in the podocyte
    corecore