632 research outputs found
Eustachian tube dysfunction in OSMF- often present seldom discovered
Objectives: To evaluate the effect of OSMF on the eustachian tube function and to correlate it with various grades
of the disease.
Study Design: Twenty OSMF patients (40 ears) and 20 healthy controls (40 ears) were evaluated for eustachian
tube function by eustachian tube function test, tympanometry and audiometry.
Results: The audiometric and tympanometric analysis showed no significant differences in hearing abilities of
OSMF patients and controls and between various grades of OSMF, indicating no hearing impairment. However,
eustachian tube function test revealed a statistically significant difference in eustachian tube function in OSMF
patients and controls. Further, there was a significant increase in severity of dysfunction with increase in severity
of disease.
Conclusions: From the present study it is evident that the subjective function of Eustachian tube may be affected by
disease process. But, probably the amount of deviation found in function of the eustachian tube is non contributing
to cause a conductive hearing loss
High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat
Novel high-throughput phenotyping (HTP) approaches are needed to advance the understanding of genotype-to-phenotype and accelerate plant breeding. The first generation of HTP has examined simple spectral reflectance traits from images and sensors but is limited in advancing our understanding of crop development and architecture. Lodging is a complex trait that significantly impacts yield and quality in many crops including wheat. Conventional visual assessment methods for lodging are time-consuming, relatively low-throughput, and subjective, limiting phenotyping accuracy and population sizes in breeding and genetics studies. Here, we demonstrate the considerable power of unmanned aerial systems (UAS) or drone-based phenotyping as a high-throughput alternative to visual assessments for the complex phenological trait of lodging, which significantly impacts yield and quality in many crops including wheat. We tested and validated quantitative assessment of lodging on 2,640 wheat breeding plots over the course of 2 years using differential digital elevation models from UAS. High correlations of digital measures of lodging to visual estimates and equivalent broad-sense heritability demonstrate this approach is amenable for reproducible assessment of lodging in large breeding nurseries. Using these high-throughput measures to assess the underlying genetic architecture of lodging in wheat, we applied genome-wide association analysis and identified a key genomic region on chromosome 2A, consistent across digital and visual scores of lodging. However, these associations accounted for a very minor portion of the total phenotypic variance. We therefore investigated whole genome prediction models and found high prediction accuracies across populations and environments. This adequately accounted for the highly polygenic genetic architecture of numerous small effect loci, consistent with the previously described complex genetic architecture of lodging in wheat. Our study provides a proof-of-concept application of UAS-based phenomics that is scalable to tens-of-thousands of plots in breeding and genetic studies as will be needed to uncover the genetic factors and increase the rate of gain for complex traits in crop breeding
SEESAW: detecting isoform-level allelic imbalance accounting for inferential uncertainty.
Detecting allelic imbalance at the isoform level requires accounting for inferential uncertainty, caused by multi-mapping of RNA-seq reads. Our proposed method, SEESAW, uses Salmon and Swish to offer analysis at various levels of resolution, including gene, isoform, and aggregating isoforms to groups by transcription start site. The aggregation strategies strengthen the signal for transcripts with high uncertainty. The SEESAW suite of methods is shown to have higher power than other allelic imbalance methods when there is isoform-level allelic imbalance. We also introduce a new test for detecting imbalance that varies across a covariate, such as time
Positive psychology of Malaysian students: impacts of engagement, motivation, self-compassion and wellbeing on mental health
Malaysia plays a key role in education of the Asia Pacific, expanding its scholarly output rapidly. However, mental health of Malaysian students is challenging, and their help-seeking is low because of stigma. This study explored the relationships between mental health and positive psychological constructs (academic engagement, motivation, self-compassion, and wellbeing), and evaluated the relative contribution of each positive psychological construct to mental health in Malaysian students. An opportunity sample of 153 students completed the measures regarding these constructs. Correlation, regression, and mediation analyses were conducted. Engagement, amotivation, self-compassion, and wellbeing were associated with, and predicted large variance in mental health. Self-compassion was the strongest independent predictor of mental health among all the positive psychological constructs. Findings can imply the strong links between mental health and positive psychology, especially selfcompassion. Moreover, intervention studies to examine the effects of self-compassion training on mental health of Malaysian students appear to be warranted.N/
Transmission and control of Plasmodium knowlesi: a mathematical modelling study.
INTRODUCTION: Plasmodium knowlesi is now recognised as a leading cause of malaria in Malaysia. As humans come into increasing contact with the reservoir host (long-tailed macaques) as a consequence of deforestation, assessing the potential for a shift from zoonotic to sustained P. knowlesi transmission between humans is critical. METHODS: A multi-host, multi-site transmission model was developed, taking into account the three areas (forest, farm, and village) where transmission is thought to occur. Latin hypercube sampling of model parameters was used to identify parameter sets consistent with possible prevalence in macaques and humans inferred from observed data. We then explore the consequences of increasing human-macaque contact in the farm, the likely impact of rapid treatment, and the use of long-lasting insecticide-treated nets (LLINs) in preventing wider spread of this emerging infection. RESULTS: Identified model parameters were consistent with transmission being sustained by the macaques with spill over infections into the human population and with high overall basic reproduction numbers (up to 2267). The extent to which macaques forage in the farms had a non-linear relationship with human infection prevalence, the highest prevalence occurring when macaques forage in the farms but return frequently to the forest where they experience higher contact with vectors and hence sustain transmission. Only one of 1,046 parameter sets was consistent with sustained human-to-human transmission in the absence of macaques, although with a low human reproduction number (R(0H) = 1.04). Simulations showed LLINs and rapid treatment provide personal protection to humans with maximal estimated reductions in human prevalence of 42% and 95%, respectively. CONCLUSION: This model simulates conditions where P. knowlesi transmission may occur and the potential impact of control measures. Predictions suggest that conventional control measures are sufficient at reducing the risk of infection in humans, but they must be actively implemented if P. knowlesi is to be controlled
Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy
Background
A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets.
Methods
Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis.
Results
A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001).
Conclusion
We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
Malaria Prevalence in Endemic Districts of Bangladesh
BACKGROUND: Following the 1971 ban of DDT in Bangladesh, malaria cases have increased steadily. Malaria persists as a major health problem in the thirteen south-eastern and north-eastern districts of Bangladesh. At present the national malaria control program, largely supported by the Global Fund for AIDS, Tuberculosis and Malaria (GFATM), provides interventions including advocacy at community level, Insecticide Treated Net (ITN) distribution, introduction of Rapid Diagnostic Tests (RDT) and combination therapy with Coartem. It is imperative, therefore, that baseline data on malaria prevalence and other malaria indicators are collected to assess the effectiveness of the interventions and rationalize the prevention and control efforts. The objective of this study was to obtain this baseline on the prevalence of malaria and bed net use in the thirteen malaria endemic districts of Bangladesh. METHODS AND PRINCIPAL FINDINGS: In 2007, BRAC and ICDDR,B carried out a malaria prevalence survey in thirteen malaria endemic districts of Bangladesh. A multi-stage cluster sampling technique was used and 9750 blood samples were collected. Rapid Diagnostic Tests (RDT) were used for the diagnosis of malaria. The weighted average malaria prevalence in the thirteen endemic districts was 3.97%. In five south-eastern districts weighted average malaria prevalence rate was 6.00% and in the eight north-eastern districts weighted average malaria prevalence rate was (0.40%). The highest malaria prevalence was observed in Khagrachari district. The majority of the cases (90.18%) were P. falciparum infections. Malaria morbidity rates in five south-eastern districts was 2.94%. In eight north-eastern districts, morbidity was 0.07%. CONCLUSION AND SIGNIFICANCE: Bangladesh has hypoendemic malaria with P. falciparum the dominant parasite species. The malaria situation in the five north-eastern districts of Bangladesh in particular warrants urgent attention. Detailed maps of the baseline malaria prevalence and summaries of the data collected are provided along with the survey results in full, in a supplemental information
Patterns of nucleotide diversity at the regions encompassing the Drosophila insulin-like peptide (dilp) genes: demography vs positive selection in Drosophila melanogaster.
In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events
Agronomic improvements can make future cereal systems in South Asia far more productive and result in a lower environmental footprint
South Asian countries will have to double their food production by 2050 while using resources more efficiently and minimizing environmental problems. Transformative management approaches and technology solutions will be required in the major grain-producing areas that provide the basis for future food and nutrition security. This study was conducted in four locations representing major food production systems of densely populated regions of South Asia. Novel production-scale research platforms were established to assess and optimize three futuristic cropping systems and management scenarios (S2, S3, S4) in comparison with current management (S1). With best agronomic management practices (BMPs), including conservation agriculture (CA) and cropping system diversification, the productivity of rice- and wheat-based cropping systems of South Asia increased substantially whereas the global warming potential intensity decreased. Positive economic returns and less use of water, labor, nitrogen, and fossil fuel energy per unit food produced were achieved. In comparison to S1, S4, in which BMPs, CA and crop diversification were implemented in the most integrated manner, achieved 54% higher grain energy yield with a 104% increase in economic returns, 35% lower total water input, and a 43% lower global warming potential intensity. Conservation agriculture practices were most suitable for intensifying as well as diversifying wheat-rice rotations, but less so for rice-rice systems. This finding also highlights the need for characterizing areas suitable for CA and subsequent technology targeting. A comprehensive baseline dataset generated in the present study will allow the prediction of extending benefits to a larger scale
- …