93 research outputs found

    Experimental food subsidies keep eagles inside protected areas: implications for conservation and resource management

    Get PDF
    The conservation and management of mobile species, populations and dynamic habitats, presents significant challenges since such species face diverse threats during various stages of their life cycle. Protected areas (PAs) are essential tools in conservation efforts, aiming to preserve native species and their habitats. However, larger mobile animals, such as the Bonelli's eagle (Aquila fasciata), may require much larger areas outside PAs for essential life moments, including foraging, resting, and wintering. As a result, the efficacy of PAs in conserving such species may be questionable. We designed an experiment in an eastern Spain PA that is home to nesting Bonelli's eagles to determine if increasing food availability through experimental feeding within the PA could result in an effective reduction of space use outside the protected area by the eagles and lead to reduce death risk. Over the period of 2016 to 2021, we tracked 10 Bonelli's eagles from six different territories using GPS-GSM transmitters. We evaluated their space use before, during, and after the feeding experiment. Our results indicate that the availability of food within PAs restricted the eagles' movement, resulting in a higher concentration of locations inside the PAs. The eagles spent less time outside the PAs when they were fed and less time in highly human-dominated habitats. Consequently, this reduced mortality risks that were higher outside the PAs. Our findings suggest that management decisions aimed at increasing food availability within PAs, could be critical in conserving endangered species populations such as the Bonelli's eagle in Mediterranean landscapes.Fieldwork seasons (2017 – 2018) were partially supported by the Wildlife Service of the Valencian Community Regional Government (Conselleria d'Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecològica, Generalitat Valenciana, Spain). Red Eléctrica de España provided financial support to track Bonelli's eagles under the supplementary feeding project. The corresponding author A. L-P. is supported by a Val I+D predoctoral grant (ACIF/2020/051) and an internship grant (CIBEFP/2021/75), both funded by the Generalitat Valenciana (Spain). This paper is part of the Ph.D. thesis of A. López-Peinado at the University of Valencia (Spain)

    Hunting as land use: Understanding the spatial associations among hunting, agriculture, and forestry

    Get PDF
    Hunting is a widespread but often overlooked land-use activity, providing major benefits to society. Hunting takes place in most landscapes, yet it remains unclear which types of landscapes foster or dampen hunting-related services, and how hunting relates to other land uses. A better understanding of these relationships is key for sustainable land-use planning that integrates wildlife management. This is particularly urgent for Europe, where wildlife populations are increasing. Focusing on Sweden, we explored the spatial associations among hunting, agriculture, and forestry to identify archetypical combinations of these land uses. Specifically, we combined indicators on the extent and intensity of agriculture and forestry, with data on hunting bags for 63 game species using self-organizing maps, a non-parametric clustering approach. We identified 15 typical bundles of co-occurring land uses at the municipality level across Sweden. The harvest of forest grouse, bears, and moose co-occurred with forestry in northern Sweden, whereas the harvest of small game, different deer species, and wild boar co-occurred with agriculture across southern Sweden, reflecting species’ biology, environmental factors, and management. Our findings also highlight the strength of associations among hunting and other land uses. Importantly, we identified large areas in central Sweden where harvest of game was below average, possibly indicating that intensity of hunting is out of balance with that of agriculture or forestry, potentially fostering conflict between wildlife and land use. Collectively, our results suggest that (1) hunting should be considered a major land use that, in Sweden, is more widespread than agriculture and forestry; (2) land-use planning must therefore integrate wildlife management; and (3) such an integration should occur in a regionalized manner that considers social-ecological context. Our approach identifies a first spatial template within which such context-specific land-use planning, aiming at aligning wildlife and diverse land uses, can take place

    Controllable diffusion of cold atoms in a harmonically driven and tilted optical lattice: Decoherence by spontaneous emission

    Full text link
    We have studied some transport properties of cold atoms in an accelerated optical lattice in the presence of decohering effects due to spontaneous emission. One new feature added is the effect of an external AC drive. As a result we obtain a tunable diffusion coefficient and it's nonlinear enhancement with increasing drive amplitude. We report an interesting maximum diffusion condition.Comment: 16 pages, 7 figures, revised versio

    Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world.Peer reviewe

    Body temperature patterns during pregnancy and parturition in moose

    Get PDF
    © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Gestation and lactation have high energetic requirements. Up to three-fourths of the gestation period in moose (Alces alces) overlaps with the food-scarce period in winter. During this period, moose deal with the limited forage resources available through hypometabolism with decreased heart rate and body temperature (Tb). Body temperature is also an indicator of oestrus, pregnancy and parturition, which is well documented in several domestic species. In this study, we sought to determine if moose displayed a similar Tb pattern during pregnancy and parturition to domesticated ruminants, and if we could detect parturition by combining Tb and activity data. We studied the Tb pattern of 30 free-ranging adult female moose (≥1.5 years old), equipped with ruminal temperature loggers and GPS collars. We documented a 0.13–0.19◦C higher Tb in pregnant compared to nonpregnant moose, depending on the study area with the Tb difference increasing along a south-north gradient, and a drop in Tb and in activity when parturition was imminent. Detection of parturition was highly successful when combining Tb and activity data with an accuracy of 91.5%. Our findings demonstrate that Tb responses to pregnancy and parturition in a wild capital-breeding ruminant are similar to those of domesticated ruminants.publishedVersio

    Using by‐catch data from wildlife surveys to quantify climatic parameters and the timing of phenology for plants and animals using camera traps

    Get PDF
    Gaining a better understanding of global environmental change is an important challenge for conserving biodiversity. Shifts in phenology are an important consequence of environmental change. Measuring phenology of different taxa simultaneously at the same spatial and temporal scale is necessary to study the effects of changes in phenology on ecosystems. Camera traps that take both time‐lapse as well as motion‐triggered images are increasingly used to study wildlife populations. The by‐catch data of these networks of camera traps provide a potential alternative for measuring several climatic and phenological variables. Here, we tested this ability of camera traps, and quantified climatic variables as well as the timing of changes in plant and animal phenology. We obtained data from 193 camera‐unit deployments during a year of camera trapping on a peninsula in northern Sweden aimed at studying wildlife. We estimated daily temperature at noon and snow cover using recordings provided by cameras. Estimates of snow cover were accurate, but temperature estimates were higher compared with a local weather station. Furthermore, we were able to identify the timing of leaf emergence and senescence for birches (Betula sp.) and the presence of bilberry berries (Vaccinium myrtillus ), as important food sources for herbivores. These were linked to the timing of the growth of antlers and the presence of new‐born young for three ungulate species as well as the presence of migratory Eurasian cranes (Grus grus ). We also identified the timing of spring and autumn moulting of mountain hares (Lepus timidus ) in relation to snow cover. In this novel study, we show the potential of (by‐catch) data from camera traps to study phenology across a broad range of taxa, suggesting that a global network of camera traps has great potential to simultaneously track wildlife populations and the phenology of interactions between animals and plants
    corecore