10 research outputs found

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    Individual Differences in the Balance of GABA to Glutamate in pFC Predict the Ability to Select among Competing Options

    No full text
    Individuals vary greatly in their ability to select one item or response when presented with a multitude of options. Here we investigate the neural underpinnings of these individual differences. Using magnetic resonance spectroscopy, we found that the balance of inhibitory versus excitatory neurotransmitters in pFC predicts the ability to select among task-relevant options in two language production tasks. The greater an individual’s concentration of GABA relative to glutamate in the lateral pFC, the more quickly he or she could select a relevant word from among competing options. This outcome is consistent with our computational modeling of this task [Snyder, H. R., Hutchison, N., Nyhus, E., Curran, T., Banich, M. T., O’Reilly, R. C., et al. Neural inhibition enables selection during language processing. Proceedings of the National Academy of Sciences, U.S.A., 107, 16483–16488, 2010], which predicts that greater net inhibition in pFC increases the efficiency of resolving competition among task-relevant options. Moreover, the association with the GABA/glutamate ratio was specific to selection and was not observed for executive function ability in general. These findings are the first to link the balance of excitatory and inhibitory neural transmission in pFC to specific aspects of executive function

    Individual Differences in the Balance of GABA to Glutamate in pFC Predict the Ability to Select among Competing Options

    No full text
    Individuals vary greatly in their ability to select one item or response when presented with a multitude of options. Here we investigate the neural underpinnings of these individual differences. Using magnetic resonance spectroscopy, we found that the balance of inhibitory versus excitatory neurotransmitters in pFC predicts the ability to select among task-relevant options in two language production tasks. The greater an individual's concentration of GABA relative to glutamate in the lateral pFC, the more quickly he or she could select a relevant word from among competing options. This outcome is consistent with our computational modeling of this task [Snyder, H. R., Hutchison, N., Nyhus, E., Curran, T., Banich, M. T., O'Reilly, R. C., et al. Neural inhibition enables selection during language processing. Proceedings of the National Academy of Sciences, U.S.A., 107, 16483-16488, 2010], which predicts that greater net inhibition in pFC increases the efficiency of resolving competition among task-relevant options. Moreover, the association with the GABA/glutamate ratio was specific to selection and was not observed for executive function ability in general. These findings are the first to link the balance of excitatory and inhibitory neural transmission in pFC to specific aspects of executive function

    Functional Magnetic Resonance Imaging of Effects of a Nicotinic Agonist in Schizophrenia

    No full text
    3-(2,4-Dimethoxybenzylidene)-anabaseine (DMXB-A) is a partial agonist at α7-nicotinic acetylcholine receptors and is now in early clinical development for treatment of deficits in neurocognition and sensory gating in schizophrenia. During its initial phase 2 test, functional magnetic resonance imaging (fMRI) studies were conducted to determine whether the drug had its intended effect on hippocampal inhibitory interneurons. Increased hemodynamic activity in the hippocampus in schizophrenia is found during many tasks, including smooth pursuit eye movements, and may reflect inhibitory dysfunction. Placebo and two doses of drug were administered in a random, double-blind crossover design. After the morning drug/placebo ingestion, subjects underwent fMRI while performing a smooth pursuit eye movement task. Data were analyzed from 16 nonsmoking patients, including 7 women and 9 men. The 150-mg dose of DMXB-A, compared with placebo, diminished the activity of the hippocampus during pursuit eye movements, but the 75-mg dose was ineffective. The effect at the 150-mg dose was negatively correlated with plasma drug levels. The findings are consistent with the previously established function of α7-nicotinic receptors on inhibitory interneurons in the hippocampus and with genetic evidence for deficits in these receptors in schizophrenia. Imaging of drug response is useful in planning future clinical tests of this compound and other nicotinic agonists for schizophrenia

    Frequency drift in MR spectroscopy at 3T

    No full text
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed

    Frequency drift in MR spectroscopy at 3T

    No full text
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B 0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed
    corecore