1,383 research outputs found

    Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage

    Get PDF
    This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture. Under the reaction conditions, micrometer-sized graphitic sheets assembled by 3−5 nm-sized domains of graphene nanoflakes are formed, and when they are heteroatom-substituted, the heteroatoms are uniformly distributed. The substituted carbon scaffolds enriched with heteroatoms (boron ~7.3%, phosphorus ~8.1%, and nitrogen ~28.1%) had surface areas as high as 900 m^2 g^(−1) and enhanced reversible hydrogen physisorption capacities relative to pristine carbon scaffolds or common carbonaceous materials. In addition, the binding energies of the substituted carbon scaffolds, as measured by adsorption isotherms, were 8.6, 8.3, and 5.6 kJ mol^(−1) for the boron-, phosphorus-, and nitrogen-enriched carbon scaffolds, respectively

    Prosthesis use is associated with reduced physical self-disgust in limb amputees

    Get PDF
    Self-disgust is an emotion schema negatively affecting people’s body image and is triggered by bodily imperfections and deviations from the “normal” body envelope. In this study, we explore the idea that “normalising” the body in those with limb amputations via the prosthesis would be linked to reduced self-directed disgust. An international clinical community sample (N = 83) with mostly lower limb amputations completed measures about their demographics, prosthesis, adjustment, body image disturbance, psychological distress, and self-directed disgust in a survey design. Consistent with the “normalising” hypothesis, correlation and bootstrapped regression models revealed, first, that frequency of prosthesis use was significantly and negatively associated with physical self-disgust. Second, prosthesis use significantly mediated the exogenous effect of time since amputation on physical self-disgust. These results emphasise the psychological value of the prosthesis beyond its functional use, and stress its importance in normalising the body envelope in those with limb amputations, which may in turn promote psychological well-being

    Motives and Barriers to Physical Activity Among Older Adults of Different Socioeconomic Status

    Get PDF
    This study explored motives and barriers to physical activity (PA) among older adults of differing socioeconomic status (SES) utilizing a self-determination theory and self-efficacy theory framework. Focus groups (n = 4) were conducted with older adults (n = 28) from two SES groups, using thematic analysis to identify motives and barriers. Integrated and identified regulations and, to a lesser extent, intrinsic motives, were evident across SES groups. Verbal persuasion and affective and physiological states emerged as prominent efficacy sources regardless of SES. More barriers were reported by the low SES group, with health conditions, neighborhood safety, and PA guidelines knowledge emerging as most salient. Time emerged as a prominent barrier for the high SES group. Integrated and identified regulations should be fostered in future interventions and policy regardless of SES. Barriers to PA varied across SES groups; thus future interventions and policy should account for such differences

    Magnetic resonance imaging plaque hemorrhage for risk stratification in carotid artery disease with moderate risk under current medical therapy

    Get PDF
    Background and Purpose—Magnetic resonance imaging (MRI)–defined carotid plaque hemorrhage (MRIPH) can predict recurrent cerebrovascular ischemic events in severe symptomatic carotid stenosis. It is less clear whether MRIPH can improve risk stratification despite optimized medical secondary prevention in those with moderate risk. Methods—One-hundred fifty-one symptomatic patients with 30% to 99% carotid artery stenosis (median age: 77, 60.5% men) clinically deemed to not benefit from endarterectomy were prospectively recruited to undergo MRI and clinical follow-up (mean, 22 months). The clinical carotid artery risk score could be evaluated in 88 patients. MRIPH+ve was defined as plaque intensity >150% that of adjacent muscle. Survival analyses were performed with recurrent infarction (stroke or diffusion-positive cerebral ischemia) as the main end point. Results—Fifty-five participants showed MRIPH+ve; 47 had low, 36 intermediate, and 5 high carotid artery risk scores. Cox regression showed MRIPH as a strong predictor of future infarction (hazard ratio, 5.2; 95% confidence interval, 1.64–16.34; P=0.005, corrected for degree of stenosis), also in the subgroup with 50% to 69% stenosis (hazard ratio, 4.1; 95% confidence interval, 1–16.8; P=0.049). The absolute risk of future infarction was 31.7% at 3 years in MRIPH+ve versus 1.8% in patients without (P<0.002). MRIPH increased cumulative risk difference of future infarction by 47.1% at 3 years in those with intermediate carotid artery risk score (P=0.004). Conclusions—The study confirms MRIPH to be a powerful risk marker in symptomatic carotid stenosis with added value over current risk scores. For patients undergoing current secondary prevention medication with clinically uncertain benefit from recanalization, that is, those with moderate degree stenosis and intermediate carotid artery risk scores, MRIPH offers additional risk stratification

    Setting research priorities to reduce mortality and morbidity of childhood diarrhoeal disease in the next 15 years.

    Get PDF
    Zulfi Bhutta and colleagues lay out research priorities for global child diarrheal disease over the next 15 years, which they developed using the Child Health and Nutrition Research Initiative (CHNRI) method. Please see later in the article for the Editors' Summar

    On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism: Results from the PlanHab study

    Get PDF
    AbstractBone losses are common as a consequence of unloading and also in patients with chronic obstructive pulmonary disease (COPD). Although hypoxia has been implicated as an important factor to drive bone loss, its interaction with unloading remains unresolved. The objective therefore was to assess whether human bone loss caused by unloading could be aggravated by chronic hypoxia.In a cross-over designed study, 14 healthy young men underwent 21-day interventions of bed rest in normoxia (NBR), bed rest in hypoxia (HBR), and hypoxic ambulatory confinement (HAmb). Hypoxic conditions were equivalent to 4000m altitude. Bone metabolism (NTX, P1NP, sclerostin, DKK1) and phospho-calcic homeostasis (calcium and phosphate serum levels and urinary excretion, PTH) were assessed from regular blood samples and 24-hour urine collections, and tibia and femur bone mineral content was assessed by peripheral quantitative computed tomography (pQCT).Urinary NTX excretion increased (P<0.001) to a similar extent in NBR and HBR (P=0.69) and P1NP serum levels decreased (P=0.0035) with likewise no difference between NBR and HBR (P=0.88). Serum total calcium was increased during bed rest by 0.059 (day D05, SE 0.05mM) to 0.091mM (day D21, P<0.001), with no additional effect by hypoxia during bed rest (P=0.199). HAmb led, at least temporally, to increased total serum calcium, to reduced serum phosphate, and to reduced phosphate and calcium excretion.In conclusion, hypoxia did not aggravate bed rest-induced bone resorption, but led to changes in phospho-calcic homeostasis likely caused by hyperventilation. Whether hyperventilation could have mitigated the effects of hypoxia in this study remains to be established

    Evolution of star formation in the UKIDSS ultra deep survey field-I. Luminosity functions and cosmic star formation rate out to z = 1.6

    Get PDF
    We present new results on the cosmic star formation history in the Subaru/XMM-Newton Deep Survey (SXDS)-Ultra Deep Survey (UDS) field out to z = 1.6. We compile narrowband data from the Subaru Telescope and the Visible and Infrared Survey Telescope forAstronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to makea selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmictime. We determine photometric redshifts for the sample using 11-band photometry, and usea spectroscopically confirmed subset to fine tune the resultant redshift distribution. We usethe maximum-likelihood technique to determine luminosity functions in each redshift slice and model the selection effects inherent in any narrow-band selection statistically, to obviatethe retrospective corrections ordinarily required. The deep narrow-band data are sensitive tovery low star formation rates (SFRs), and allow an accurate evaluation of the faint end slopeof the Schechter function, α We find that a is particularly sensitive to the assumed faintest broad-band magnitude of a galaxy capable of hosting an emission line, and propose thatthis limit should be empirically motivated. For this analysis, we base our threshold on thelimiting observed equivalent widths of emission lines in the local Universe. We compute thecharacteristic SFR of galaxies in each redshift slice, and the integrated SFR density,ρ SFR. Wefind our results to be in good agreement with the literature and parametrize the evolution of the SFR density as ρ SFR α(1 + z)4.58 confirming a steep decline in star formation activity since z ~ 1.6.Peer reviewe

    Influence of Dunes on Channel‐Scale Flow and Sediment Transport in a Sand Bed Braided River

    Get PDF
    This is the final version. Available on open access from the American Geophysical Union via the DOI in this recordData availability: Project data is stored in, and available from, the UK Centre for Ecology & Hydrology (http://eidc.ceh.ac.uk).Current understanding of the role that dunes play in controlling bar and channel-scale processes and river morphodynamics is incomplete. We present results from a combined numerical modeling and field monitoring study that isolates the impact of dunes on depth-averaged and near-bed flow structure, with implications for morphodynamic modeling. Numerical simulations were conducted using the three-dimensional Computational Fluid Dynamics code OpenFOAM to quantify the time-averaged flow structure within a 400 m x 100 m channel using DEMs for which: (i) dunes and bars were present within the model; and (ii) only bar43 scale topographic features were resolved (dunes were removed). Comparison of these two simulations shows that dunes enhance lateral flows and reduce velocities over bar tops by as much as 30%. Dunes influence the direction of modeled sediment transport at spatial scales larger than individual bedforms due to their effect on topographic steering of the near-bed flow structure. We show that dunes can amplify, dampen or even reverse the deflection of sediment down lateral bar slopes, and this is closely associated with 3D and obliquely orientated dunes. Sediment transport patterns calculated using theory implemented in depth-averaged morphodynamic models suggests that gravitational deflection of sediment is still controlled by bar-scale topography, even in the presence of dunes. However, improved parameterizations of flow and sediment transport in depth-averaged morphodynamic models are needed that account for the effects of both dune- and bar- scale morphology on near-bed flow and sediment transport.Natural Environment Research Council (NERC

    Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery

    Get PDF
    Images from specially‐commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure‐from‐Motion (SfM) techniques and application of a depth‐brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near‐bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is presented and analysis suggests a depth‐brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low‐turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near‐equivalence in sediment flux. Hence, reach‐based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low‐turbidity rivers that currently have sparse information on bedload sediment transport rates

    A Bayesian palaeoenvironmental transfer function model for acidified lakes

    Get PDF
    A Bayesian approach to palaeoecological environmental reconstruction deriving from the unimodal responses generally exhibited by organisms to an environmental gradient is described. The approach uses Bayesian model selection to calculate a collection of probability-weighted, species-specific response curves (SRCs) for each taxon within a training set, with an explicit treatment for zero abundances. These SRCs are used to reconstruct the environmental variable from sub-fossilised assemblages. The approach enables a substantial increase in computational efficiency (several orders of magnitude) over existing Bayesian methodologies. The model is developed from the Surface Water Acidification Programme (SWAP) training set and is demonstrated to exhibit comparable predictive power to existing Weighted Averaging and Maximum Likelihood methodologies, though with improvements in bias; the additional explanatory power of the Bayesian approach lies in an explicit calculation of uncertainty for each individual reconstruction. The model is applied to reconstruct the Holocene acidification history of the Round Loch of Glenhead, including a reconstruction of recent recovery derived from sediment trap data.The Bayesian reconstructions display similar trends to conventional (Weighted Averaging Partial Least Squares) reconstructions but provide a better reconstruction of extreme pH and are more sensitive to small changes in diatom assemblages. The validity of the posteriors as an apparently meaningful representation of assemblage-specific uncertainty and the high computational efficiency of the approach open up the possibility of highly constrained multiproxy reconstructions
    • 

    corecore