123 research outputs found
Opportunities and challenges of applying advanced X-ray spectroscopy to actinide and lanthanide N-donor ligand systems
N-donor ligands such as n-Pr-BTP [2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine] preferentially bind trivalent actinides (An) over trivalent lanthanides (Ln) in liquid–liquid separation. However, the chemical and physical processes responsible for this selectivity are not yet well understood. Here, an explorative comparative X-ray spectroscopy and computational (L3-edge) study for the An/Ln L-edge and the N K-edge of [An/Ln(n-Pr-BTP) ](NO), [Ln(n-Pr-BTP) ](CFSO) and [Ln(n-Pr-BTP) ](ClO) complexes is presented. High-resolution X-ray absorption near-edge structure (HR-XANES) L-edge data reveal additional features in the pre- and post-edge range of the spectra that are investigated using the quantum chemical codes FEFF and FDMNES. X-ray Raman spectroscopy studies demonstrate the applicability of this novel technique for investigations of liquid samples of partitioning systems at the N K-edge
Mid-term evaluation of the Hercule III programme. CEPS Research Report, February 2018
The Hercule III programme was established by the European Commission to promote activities against fraud, corruption and any other illegal activities affecting the financial interests of the Union. In compliance with Article 13 of Regulation (EU) No 250/2014 establishing the Hercule III Programme, the Evaluation Roadmap prepared by OLAF and the Better Regulation Guidelines, CEPS was commissioned to carry out a mid-term evaluation, together with three other institutes, to assess the relevance, coherence, effectiveness, efficiency, EU added value and sustainability of the programme. Based on primary data collected from 574 stakeholders and extensive desk research, the study concludes that Hercule III scores well in all the evaluation criteria. In addition, the programme appears to indirectly contribute to the targets of the Europe 2020 strategy. Therefore, the evaluation recommends the funding of a new edition of the programme in order to sustain the protection of EU financial interests in the coming years. Whereas no major changes would be required in the structure of the programme, it is advisable to introduce certain improvements to enhance the current performance of Hercule III and its future editions. In this respect, the programme should, inter alia, allocate more resources to protecting EU financial interests on the expenditure side of the budget, fighting against corruption and VAT fraud, fostering cross-border cooperation and procuring and making technical equipment available to national authorities
The Influence of Iron in Minimizing the Microstructural Anisotropy of Ti-6Al-4V Produced by Laser Powder-Bed Fusion
There remains a significant challenge in adapting alloys for metal based Additive Manufacturing (AM). Adjusting alloy composition to suit the process, particularly under regimes close to industrial practice, is therefore a potential solution. With the aim of designing new Ti-based alloys of superior mechanical properties for use in laser powder-bed fusion, this research investigates the influence of Fe on the microstructural development of Ti-6Al-4V. The operating mechanisms that govern the relationship between the alloy composition (and Fe in particular) and the grain size are explored using EBSD, TEM and in-situ high-energy synchrotron X-ray diffraction. It was found that Fe additions up to 3 wt% lead to a progressive refinement of the microstructure. By exploiting the cooling rates of AM and suitable amount of Fe additions, it was possible to obtain microstructures that can be optimized by heat treatment without obvious precipitation of detrimental brittle phases. The resulting microstructure consists of a desirable and well studied fully laminar α+ β structure in refined prior-β grains
The influence of iron in minimizing the microstructural anisotropy of Ti-6Al-4V produced by laser powder-bed fusion
There remains a significant challenge in adapting alloys for metal-based additive manufacturing (AM). Adjusting alloy composition to suit the process, particularly under regimes close to industrial practice, is therefore a potential solution. With the aim of designing new Ti-based alloys of superior mechanical properties for use in laser powder-bed fusion, this research investigates the influence of Fe on the microstructural development of Ti-6Al-4V. The operating mechanisms that govern the relationship between the alloy composition (and Fe in particular) and the grain size are explored using EBSD, TEM, and in situ high-energy synchrotron X-ray diffraction. It was found that Fe additions up to 3 wt pct lead to a progressive refinement of the microstructure. By exploiting the cooling rates of AM and suitable amount of Fe additions, it was possible to obtain microstructures that can be optimized by heat treatment without obvious precipitation of detrimental brittle phases. The resulting microstructure consists of a desirable and well-studied fully laminar α + β structure in refined prior-β grains
Magnetosomes could be protective shields against metal stress in magnetotactic bacteria
Magnetotactic bacteria are aquatic microorganisms with the ability to biomineralise membrane-enclosed magnetic nanoparticles, called magnetosomes. These magnetosomes are arranged into a chain that behaves as a magnetic compass, allowing the bacteria to align in and navigate along the Earth's magnetic field lines. According to the magneto-aerotactic hypothesis, the purpose of producing magnetosomes is to provide the bacteria with a more efficient movement within the stratified water column, in search of the optimal positions that satisfy their nutritional requirements. However, magnetosomes could have other physiological roles, as proposed in this work. Here we analyse the role of magnetosomes in the tolerance of Magnetospirillum gryphiswaldense MSR-1 to transition metals (Co, Mn, Ni, Zn, Cu). By exposing bacterial populations with and without magnetosomes to increasing concentrations of metals in the growth medium, we observe that the tolerance is significantly higher when bacteria have magnetosomes. The resistance mechanisms triggered in magnetosome-bearing bacteria under metal stress have been investigated by means of x-ray absorption near edge spectroscopy (XANES). XANES experiments were performed both on magnetosomes isolated from the bacteria and on the whole bacteria, aimed to assess whether bacteria use magnetosomes as metal storages, or whether they incorporate the excess metal in other cell compartments. Our findings reveal that the tolerance mechanisms are metal-specific: Mn, Zn and Cu are incorporated in both the magnetosomes and other cell compartments; Co is only incorporated in the magnetosomes, and Ni is incorporated in other cell compartments. In the case of Co, Zn and Mn, the metal is integrated in the magnetosome magnetite mineral core.Te Spanish and Basque Governments are acknowledged for funding under projects number MAT2017-
83631-C3-R and IT-1245-19, respectively. Dr. L. Marcano acknowledges the fnancial support provided through
a postdoctoral fellowship from the Basque Government
TMS-EEG biomarkers of amnestic mild cognitive impairment due to Alzheimer\u27s disease: A proof-of-concept six years prospective study
Background: Early and affordable identification of subjects with amnestic mild cognitive impairment (aMCI) who will convert to Alzheimer’s disease (AD) is a major scientific challenge. Objective: To investigate the neurophysiological hallmarks of sensorimotor cortex function in aMCI under the hypothesis that some may represent the plastic rearrangements induced by neurodegeneration, hence predictors of future conversion to AD. We sought to determine (1) whether the sensorimotor network shows peculiar alterations in patients with aMCI and (2) if sensorimotor network alterations predict long-term disease progression at the individual level. Methods: We studied several transcranial magnetic stimulation (TMS)-electroencephalogram (EEG) parameters of the sensorimotor cortex in a group of patients with aMCI and followed them for 6 years. We then identified aMCI who clinically converted to AD [prodromal to AD-MCI (pAD-MCI)] and those who remained cognitively stable [non-prodromal to AD-MCI (npAD-MCI)]. Results: Patients with aMCI showed reduced motor cortex (M1) excitability and disrupted EEG synchronization [decreased intertrial coherence (ITC)] in alpha, beta and gamma frequency bands compared to the control subjects. The degree of alteration in M1 excitability and alpha ITC was comparable between pAD-MCI and npAD-MCI. Importantly, beta and gamma ITC impairment in the stimulated M1 was greater in pAD-MCI than npAD-MCI. Furthermore, an additional parameter related to the waveform shape of scalp signals, reflecting time-specific alterations in global TMS-induced activity [stability of the dipolar activity (sDA)], discriminated npAD-MCI from MCI who will convert to AD. Discussion: The above mentioned specific cortical changes, reflecting deficit of synchronization within the cortico-basal ganglia-thalamo-cortical loop in aMCI, may reflect the pathological processes underlying AD. These changes could be tested in larger cohorts as neurophysiological biomarkers of AD
Metallurgy of high-silicon steel parts produced using selective laser melting
The metallurgy of high-silicon steel (6.9%wt.Si) processed using Selective Laser Melting (SLM) is presented for the first time in this study. High-silicon steel has great potential as a soft magnetic alloy, but its employment has been limited due to its poor workability. The effect of SLM-processing on the metallurgy of the alloy is investigated in this work using microscopy, X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). XRD analysis suggests that the SLM high-silicon steel is a single ferritic phase (solid solution), with no sign of phase ordering. This is expected to have beneficial effects on the material properties, since ordering has been shown to make silicon steels more brittle and electrically conductive. For near-fully dense samples, columnar grains with a high aspect ratio and oriented along the build direction are found. Most importantly, a fibre-texture along the build direction can be changed into a cube-texture when the qualitative shape of the melt-pool is altered (from shallow to deep) by increasing the energy input of the scanning laser. This feature could potentially open the path to the manufacture of three-dimensional grain-oriented high-silicon steels for electromechanical applications
Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity
Up to date, tissue regeneration of large bone defects is a clinical challenge under exhaustive study. Nowadays, the most common clinical solutions concerning bone regeneration involve systems based on human or bovine tissues, which suffer from drawbacks like antigenicity, complex processing, low osteoinductivity, rapid resorption and minimal acceleration of tissue regeneration. This work thus addresses the development of nanofibrous synthetic scaffolds of polycaprolactone (PCL) - a long-term degradation polyester - compounded with hydroxyapatite (HA) and variable concentrations of ZnO as alternative solutions for accelerated bone tissue regeneration in applications requiring mid- and long-term resorption. In vitro cell response of human fetal osteoblasts as well as antibacterial activity against Staphylococcus aureus of PCL:HA:ZnO and PCL:ZnO scaffolds were here evaluated. Furthermore, the effect of ZnO nanostructures at different concentrations on in vitro degradation of PCL electrospun scaffolds was analyzed. The results proved that higher concentrations ZnO may induce early mineralization, as indicated by high alkaline phosphatase activity levels, cell proliferation assays and positive Alizarin-Red-S-stained calcium deposits. Moreover, all PCL:ZnO scaffolds particularly showed antibacterial activity against S. aureus which may be attributed to release of Zn2+ ions. Additionally, results here obtained showed a variable PCL degradation rate as a function of ZnO concentration. Therefore, this work suggests that our PCL:ZnO scaffolds may be promising and competitive short-, mid- and long-term resorption systems against current clinical solutions for bone tissue regeneration.Fil: Felice, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Sanchez, Maria Alejandra. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Socci, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Sappia, Luciano David. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Gómez, María Inés. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorgánica; ArgentinaFil: Cruz, María Karina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Inorgánica; ArgentinaFil: Felice, Carmelo Jose. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Martí, Mercè. Universitat Autònoma de Barcelona; EspañaFil: Pividori, María Isabel. Universitat Autònoma de Barcelona; EspañaFil: Simonelli, Gabriela. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Rodriguez, Andrea Paola. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentin
Itinerant electrons, local moments, and magnetic correlations in the pnictide superconductors CeFeAsO 1 − x F x and Sr(Fe 1 − x Co x ) 2 As 2
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3 core level photoemission spectra in the parent and optimally doped CeFeAsO{}_{1\ensuremath{-}x}F ( 0, 0.11) and Sr(Fe{}_{1\ensuremath{-}x}Co)As ( 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10{}^{\ensuremath{-}15} s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3{\ensuremath{\mu}}_{B} in CeFeAsO and 2.1{\ensuremath{\mu}}_{B} in SrFeAs. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9{\ensuremath{\mu}}_{B} in CeFeAsOF and 1.3{\ensuremath{\mu}}_{B} in Sr(FeCo)As. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity
- …