41 research outputs found

    Risk assessment of pesticides on bees: evaluating risk coefficients for assessing acute and chronic toxicity

    Get PDF
    Background: Risk coefficients are the key in the way how a pesticide active substances or formulated products will go through the risk assessment scheme dichotomy. Defining them is thus one of the main challenges of a risk assessment scheme design. In the light of the scientific publications on the subject, the existing risk coefficients and methodologies used for the toxicity evaluation under international guidelines result questionable. Results: LD50 values have shown to be variable. Prolonged effects following single contact can sometimes be observed when measuring the acute toxicity. The trigger value (10) of the risk coefficient results as inadequate. The toxicity derived from the exposure to substances continuously available for bees at sub-lethal doses needs to be evaluated separately, given the wide differences between acute and chronic lethal effects of pesticides. Conclusions: The observation period of the mortality tests should be lengthened as long as mortality increases, and while control mortality remains acceptable. Whenever active substances can pollute bees’ food sources, first tier tests should include laboratory tests: (1) on adult bees with: (a) acute toxicity tests; (b) chronic toxicity tests; (c) behavioural tests; and (2) larvae toxicity tests. Consequently, the decision to run higher tier tests should depend on four different risk coefficients. Keywords: honeybees, risk assessment, acute toxicity, chronic toxicity, risk coefficient, TE

    Assessment of pesticides risk for bees: methods for PNEC measurements

    Get PDF
    Background: An individual honeybee shows a complex behavioral structure. Each bee takes part in the collective behavioral set up that ensures bee colony survival and development. Contaminants are likely to have effects on individual bees’ behavior with consequences at the level of the whole colony. They also are likely to alter bees’ physiology, including lifespan, fertility or fecundity, leading to colony weakness or colony collapse. Results: Peer-reviewed scientific literature provides a wide range of methods used for testing honeybees’ behavioral or physiological parameters. Apart from alterations that may appear during the conduction of acute or chronic toxicity tests, specific tests could be conducted to complement the risk assessment in order to evaluate the impact of sublethal doses of contaminants on bees. Such tests can be developed both in laboratory conditions or as part of the semi-field and field tests that are currently required as higher tier tests of risk assessment schemes. Conclusion: The purpose of this work is to review some of these methods and discuss their relevance in the evaluation of pesticide active substances and/or products in view to propose their future inclusion in pesticides risk assessment to bees. Keywords: honey bee, sublethal effects, risk assessmen

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides

    Get PDF
    International audience; Over-reliance on pesticides for pest control is inflicting serious damage to the environmental services that underpin agricultural productivity. The widespread use of systemic insecticides, neonicotinoids, and the phenylpyrazole fipronil in particular is assessed here in terms of their actual use in pest management, effects on crop yields, and the development of pest resistance to these compounds in many crops after two decades of usage. Resistance can only be overcome in the longterm by implementing methods that are not exclusively based on synthetic pesticides. A diverse range of pest management tactics is already available, all of which can achieve efficient pest control below the economic injury level while maintaining the productivity of the crops. A novel insurance method against crop failure is shown here as an example of alternative methods that can protect farmer's crops and their livelihoods without having to use insecticides. Finally, some concluding remarks about the need for a new framework for a truly sustainable agriculture that relies mainly on natural ecosystem services instead of chemicals are included; this reinforcing the previous WIA conclusions (van der Sluijs et al. Environ Sci Pollut Res 22:148-154, 2015)

    Long-term field-realistic exposure to a next-generation pesticide, flupyradifurone, impairs honey bee behaviour and survival

    Get PDF
    10openInternationalInternational coauthor/editorThe assessment of pesticide risks to insect pollinators have typically focused on short-term, lethal impacts. The environmental ramifications of many of the world’s most commonly employed pesticides, such as those exhibiting systemic properties that can result in long-lasting exposure to insects, may thus be severely underestimated. Here, seven laboratories from Europe and North America performed a standardised experiment (a ring-test) to study the long-term lethal and sublethal impacts of the relatively recently approved ‘bee safe’ butenolide pesticide flupyradifurone (FPF, active ingredient in Sivanto®) on honey bees. The emerging contaminant, FPF, impaired bee survival and behaviour at field-realistic doses (down to 11 ng/bee/day, corresponding to 400 µg/kg) that were up to 101-fold lower than those reported by risk assessments (1110 ng/bee/day), despite an absence of time-reinforced toxicity. Our findings raise concerns about the chronic impact of pesticides on pollinators at a global scale and support a novel methodology for a refined risk assessmentopenTosi, Simone; Nieh, James C; Brandt, Annely; Colli, Monica; Fourrier, Julie; Giffard, Herve; Hernández-López, Javier; Malagnini, Valeria; Williams, Geoffrey R; Simon-Delso, NoaTosi, S.; Nieh, J.C.; Brandt, A.; Colli, M.; Fourrier, J.; Giffard, H.; Hernández-López, J.; Malagnini, V.; Williams, G.R.; Simon-Delso, N

    Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle

    Get PDF
    Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time

    Supplementary information for the article: Brodschneider, R.; Schlagbauer, J.; Arakelyan, I.; Ballis, A.; Brus, J.; Brusbardis, V.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; Coffey, M. F.; Cornelissen, B.; da Costa, C. A.; Danneels, E.; Danihlík, J.; Dobrescu, C.; Evans, G.; Fedoriak, M.; Forsythe, I.; Gregorc, A.; Johannesen, J.; Kauko, L.; Kristiansen, P.; Martikkala, M.; Martín-Hernández, R.; Mazur, E.; Mutinelli, F.; Patalano, S.; Raudmets, A.; Simon Delso, N.; Stevanovic, J.; Uzunov, A.; Vejsnæs, F.; Williams, A.; Gray, A. Spatial Clusters of Varroa Destructor Control Strategies in Europe. J Pest Sci 2022. https://doi.org/10.1007/s10340-022-01523-2.

    Get PDF
    Table S1. Utilized packages of the statistical software R version 4.0.4.Supplementary material for: [https://vet-erinar.vet.bg.ac.rs/handle/123456789/2469]Related to the published version: [https://vet-erinar.vet.bg.ac.rs/handle/123456789/2469

    Spatial clusters of Varroa destructor control strategies in Europe

    Get PDF
    Publication history: Accepted - 18 May 2022; Published online - 29 June 2022Beekeepers have various options to control the parasitic mite Varroa destructor in honey bee colonies, but no empirical data are available on the methods they apply in practice. We surveyed 28,409 beekeepers maintaining 507,641 colonies in 30 European countries concerning Varroa control methods. The set of 19 diferent Varroa diagnosis and control measures was taken from the annual COLOSS questionnaire on honey bee colony losses. The most frequent activities were monitoring of Varroa infestations, drone brood removal, various oxalic acid applications and formic acid applications. Correspondence analysis and hierarchical clustering on principal components showed that six Varroa control options (not necessarily the most used ones) signifcantly contribute to defning three distinctive clusters of countries in terms of Varroa control in Europe. Cluster I (eight Western European countries) is characterized by use of amitraz strips. Cluster II comprises 15 countries from Scandinavia, the Baltics, and Central-Southern Europe. This cluster is characterized by long-term formic acid treatments. Cluster III is characterized by dominant usage of amitraz fumigation and formed by seven Eastern European countries. The median number of diferent treatments applied per beekeeper was lowest in cluster III. Based on estimation of colony numbers in included countries, we extrapolated the proportions of colonies treated with diferent methods in Europe. This suggests that circa 62% of colonies in Europe are treated with amitraz, followed by oxalic acid for the next largest percentage of colonies. We discuss possible factors determining the choice of Varroa control measures in the diferent clustersOpen access funding provided by University of Graz. The authors have no relevant financial or non-financial interests to disclose. COLOSS and its supporters had no influence on the study design or the decision to publish

    Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey

    Get PDF
    Publication history: Accepted - 5 March 2018; Published online - 8 May 2018.In this short note we present comparable loss rates of honey bee colonies during winter 2016/2017 from 27 European countries plus Algeria, Israel and Mexico, obtained with the COLOSS questionnaire. The 14,813 beekeepers providing valid loss data collectively wintered 425,762 colonies, and reported 21,887 (5.1%, 95% confidence interval 5.0–5.3%) colonies with unsolvable queen problems and 60,227 (14.1%, 95% CI 13.8–14.4%) dead colonies after winter. Additionally we asked for colonies lost due to natural disaster, which made up another 6,903 colonies (1.6%, 95% CI 1.5–1.7%). This results in an overall loss rate of 20.9% (95% CI 20.6–21.3%) of honey bee colonies during winter 2016/2017, with marked differences among countries. The overall analysis showed that small operations suffered higher losses than larger ones (p < 0.001). Overall migratory beekeeping had no significant effect on the risk of winter loss, though there was an effect in several countries. A table is presented giving detailed results from 30 countries. A map is also included, showing relative risk of colony winter loss at regional level.The authors are also grateful to various national funding sources for their support of some of the monitoring surveys [including, in the Republic of Serbia, MPNTR-RS, through grant number III46002]. The authors acknowledge the financial support by the University of Graz for open access publication
    corecore