166 research outputs found

    Testing of PLL-based True Random Number Generator in Changing Working Conditions

    Get PDF
    Security of cryptographic systems depends significantly on security of secret keys. Unpredictability of the keys is achieved by their generation by True Random Number Generators (TRNGs). In the paper we analyze behavior of the Phase-Locked Loop (PLL) based TRNG in changing working environment. The frequency of signals synthesized by PLL may be naturally influenced by chip temperature. We show what impact the temperature has on the quality of generated random sequence of the PLL-based TRNG. Thank to analysis of internal signals of the generator we are able to prove dependencies between the PLL parameters, statistical parameters of the generated sequence and temperature. Considering the measured results of experiments we form a new requirement in order to improve the robustness of the designed TRNG

    Effects of supervised exercise training on lower-limb cutaneous microvascular reactivity in adults with venous ulcers

    Get PDF
    Purpose: To investigate the effects of a 12-week supervised exercise programme on lower-limb cutaneous microvascular reactivity in adults with venous leg ulceration. Methods: Thirty-eight adults with unilateral venous ulceration who were being treated with lower-limb compression therapy (58% male; mean age 65 years; median ulcer size 5 cm2) were randomly allocated to exercise or control groups. Exercise participants (n=18) were invited to attend thrice weekly sessions of lower-limb aerobic and resistance exercise for 12 weeks. Cutaneous microvascular reactivity was assessed in the gaiter region of ulcerated and non-ulcerated legs at baseline and 3 months using laser Doppler fluxmetry coupled with iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). Cutaneous vascular conductance (CVC) was calculated as laser Doppler flux (AU)/mean arterial pressure (mmHg). Results: Thirty-seven participants completed follow-up assessments. Median class attendance was 36 (range 2 to 36). Analyses of covariance revealed greater peak CVC responses to ACh in the exercise group at 3 months in both the ulcerated (adjusted difference = 0.944 AU/mmHg; 95% CI 0.504 to 1.384) and non-ulcerated (adjusted difference = 0.596 AU/mmHg; 95% CI 0.028 to 1.164) legs. Peak CVC responses to SNP were also greater in the exercise group at 3 months in the ulcerated leg (adjusted difference = 0.882 AU/mmHg; 95% CI 0.274 to 1.491), but not the non-ulcerated leg (adjusted difference = 0.392 AU/mmHg; 95% CI -0.377 to 1.161). Conclusion: Supervised exercise training improves lower-limb cutaneous microvascular reactivity in adults with venous leg ulceration. Keywords Randomized controlled trial; Exercise; Ulceration; Vascular function; Laser Doppler fluxmetry; Iontophoresi

    An anatomy-based lumped parameter model of cerebrospinal venous circulation: can an extracranial anatomical change impact intracranial hemodynamics?

    Get PDF
    Background The relationship between extracranial venous system abnormalities and central nervous system disorders has been recently theorized. In this paper we delve into this hypothesis by modeling the venous drainage in brain and spinal column areas and simulating the intracranial flow changes due to extracranial morphological stenoses. Methods A lumped parameter model of the cerebro-spinal venous drainage was created based on anatomical knowledge and vessels diameters and lengths taken from literature. Each vein was modeled as a hydraulic resistance, calculated through Poiseuille’s law. The inputs of the model were arterial flow rates of the intracranial, vertebral and lumbar districts. The effects of the obstruction of the main venous outflows were simulated. A database comprising 112 Multiple Sclerosis patients (Male/Female = 42/70; median age ± standard deviation = 43.7 ± 10.5 years) was retrospectively analyzed. Results The flow rate of the main veins estimated with the model was similar to the measures of 21 healthy controls (Male/Female = 10/11; mean age ± standard deviation = 31 ± 11 years), obtained with a 1.5 T Magnetic Resonance scanner. The intracranial reflux topography predicted with the model in cases of internal jugular vein diameter reduction was similar to those observed in the patients with internal jugular vein obstacles. Conclusions The proposed model can predict physiological and pathological behaviors with good fidelity. Despite the simplifications introduced in cerebrospinal venous circulation modeling, the key anatomical feature of the lumped parameter model allowed for a detailed analysis of the consequences of extracranial venous impairments on intracranial pressure and hemodynamics

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions

    Get PDF
    Herein, a study of the plasma electrolytic oxidation (PEO) of niobium in an anodising bath composed of potassium silicate (K2SiO3) and potassium hydroxide (KOH) is reported. The effects of the K2SiO3 concentration in the bath and the process voltage on the characteristics of the obtained oxide layers were assessed. Compact, barrier-type oxide layers were obtained when the process voltage did not exceed the breakdown potential of the oxide layer. When this threshold was breached, the morphology of the oxide layer changed markedly, which is typical of PEO. A significant amount of silicon, in the form of amorphous silica, was incorporated into the oxide coatings under these conditions compared with the amount obtained with conventional anodising. This surface modification technique led to an improvement in the corrosion resistance of niobium in Ringer’s solution, regardless of the imposed process conditions

    Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Get PDF
    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm- 3 phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. © 2014 Elsevier B.V.Russian Foundation for Basic Research, RFBR: 13-08-96007; Ural Branch, Russian Academy of Sciences, UB RAS: 12-T-2-1009This work was supported by the Polish Ministry of Science and Education under the “Diamond Grant” programme, research project no. DI 2012 024142 . We acknowledge also the partial support of the Ural Division of the Russian Academy of Sciences (Project 12-T-2-1009 ) and the Russian Foundation for Basic Research (Project 13-08-96007 )

    On the electropolishing and anodic oxidation of Ti-15Mo alloy

    Full text link
    This paper presents research on modifying the surface of Ti-15Mo alloy using electropolishing and anodic passivation. The electropolishing process was carried out in solutions containing sulfuric acid, ethylene glycol, ammonium fluoride and oxalic acid. Whereas a voltage range from 20 to 100 V and a 1 M orthophosphoric acid solution were used during the anodic passivation. The influence of above mentioned processes parameters on the quality of the obtained oxide layer on Ti-15Mo alloy was investigated. The analysis of Ti-15Mo surface after modification was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), ellipsometry, and mechanical tests. Moreover, the corrosion resistance was investigated using a potentiostatic method in Ringer's solution. It was found that electropolishing leads to an increase in the surface homogeneity and to the form of an oxide layer, which consisted of TiO2 and MoO3. Whereas the oxide layers obtained during anodic passivation were characterized by different properties depending on the applied voltage. The anodic passivation at various voltages (20-100 V) increased the surface wettability (94.5°-87.6°) in comparison to the electropolished sample (97.5°). Moreover, the obtained oxide layer after anodization exhibited a high hardness. The electrolytic polishing and anodic passivation of Ti-15Mo also improved corrosion resistance of the alloy in contact with Ringer's solution. The sample anodized at 80 V presented the highest corrosion resistance by the smallest corrosion current density (1.4 nA cm-2) and the highest polarization resistance (37.4 MΩ cm2). © 2016 Elsevier Ltd. All rights reserved

    Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension

    Full text link
    The surface modification of titanium alloys is an effective method to improve their biocompatibility and tailor the material to the desired profile of implant functionality. In this work, technologically-advanced titanium alloys—Ti-15Mo, Ti-13Nb-13Zr and Ti-6Al-7Nb—were anodized in suspensions, followed by treatment in alkali solutions, with wollastonite deposition from the powder phase suspended in solution. The anodized samples were immersed in NaOH or KOH solution with various concentrations with a different set of temperatures and exposure times. Based on their morphologies (observed by scanning electron microscope), the selected samples were investigated by Raman and X-ray photoelectron spectroscopy (XPS). Titaniate compounds were formed on the previously anodized titanium surfaces. The surface wettability significantly decreased, mainly on the modified Ti-15Mo alloy surface. Titanium alloy compounds had an influence on the results of the titanium alloys’ surface modification, which caused the surfaces to exhibit differential physical properties. In this paper, we present the influence of the anodization procedure on alkali treatment effects and the properties of obtained hybrid coatings
    corecore