19 research outputs found

    Efectos de la solución de problemas sobre los comportamientos de autocuidado de cuidadores de pacientes oncológicos en fase paliativa: un estudio piloto

    Get PDF
    Caring for a relative with terminal cancer brings a series of problems in the family, work, financial and social arenas. These problems, in turn, cause a negative impact on the Quality of Life (QOL) of the patients’ primary caregivers, including their physical and psychological health. The purpose of the present study was to examine the effects of an intervention based on Problem Solving Therapy on QOL, anxious and depressive symptoms and on the acquisition of self-care skills by terminal cancer patients’ primary caregivers. A repeated measures N=1 design was used on pre and post intervention measurements on Beck’s anxiety and depression inventories, the WHOQOL-Bref and a questionnaire on self-care expressly designed for the study. Results revealed clinically significant improvements on anxious and depressive symptoms and improvement on the participants’ QOL. Problem Solving Therapy resulted a viable and effective approach to cope with the problems posed by caring for a terminal patient and improving self-care skills. A possible drawback of the procedures includes a lengthy intervention howhich was not always commensurate with the survival time of the terminal patients.Cuidar de un familiar con cáncer avanzado trae consigo una serie de problemas familiares, laborales, económicos, y sociales que impactan negativamente sobre la calidad de vida y la salud física y psicológica de los cuidadores primarios. El objetivo de la presente investigación fue evaluar la eficacia de una intervención basada en la terapia de solución de problemas sobre la adquisición de habilidades de autocuidado, la calidad de vida, y la sintomatología ansiosa y depresiva en cuidadores primarios de pacientes que reciben cuidados paliativos. Se utilizó un diseño de N=1 de medidas repetidas, con evaluación pre y post- test con los inventarios de ansiedad y depresión de Beck, el inventario de calidad de vida WHOQol Bref y un cuestionario de conductas de autocuidado diseñado ex profeso para esta investigación. Se identificaron mejorías clínicamente significativas en las medidas de sintomatología ansiosa y depresiva, un incremento en la calidad de vida y la identificación de la Terapia de Solución de Problemas como una herramienta útil para afrontar las problemáticas derivadas de las actividades de cuidado. La principal limitante para el desarrollo de la intervención fue que el tiempo propuesto no correspondió con el promedio de sobrevida de los pacientes atendidos en el servicio

    Effects of problem solving therapy on self-care behaviors by primary caregivers of terminal cancer patients: A pilot study

    Get PDF
    Caring for a relative with terminal cancer brings a series of problems in the family, work, financial and social arenas. These problems, in turn, cause a negative impact on the Quality of Life (QOL) of the patients’ primary caregivers, including their physical and psychological health. The purpose of the present study was to examine the effects of an intervention based on Problem Solving Therapy on QOL, anxious and depressive symptoms and on the acquisition of self-care skills by terminal cancer patients’ primary caregivers. A repeated measures N=1 design was used on pre and post intervention measurements on Beck’s anxiety and depression inventories, the WHOQOL-Bref and a questionnaire on self-care expressly designed for the study. Results revealed clinically significant improvements on anxious and depressive symptoms and improvement on the participants’ QOL. Problem Solving Therapy resulted a viable and effective approach to cope with the problems posed by caring for a terminal patient and improving self-care skills. A possible drawback of the procedures includes a lengthy intervention howhich was not always commensurate with the survival time of the terminal patients

    High-resolution hepatitis C virus subtyping using NS5B deep sequencing and phylogeny, an alternative to current methods

    Full text link
    HepatitisCvirus(HCV)is classified into seven major genotypesand67 subtypes. Recent studies haveshownthat inHCVgenotype 1-infected patients, response rates to regimens containingdirect-acting antivirals(DAAs)are subtype dependent. Currently available genotypingmethods have limited subtyping accuracy.Wehave evaluated theperformanceof adeep-sequencing-basedHCVsubtyping assay, developed for the 454/GS-Junior platform, in comparisonwith thoseof two commercial assays (VersantHCVgenotype 2.0andAbbott Real-timeHCVGenotype II)andusingdirectNS5Bsequencing as a gold standard (direct sequencing), in 114 clinical specimenspreviously tested by first-generation hybridization assay (82 genotype 1and32 with uninterpretable results). Phylogenetic analysis of deep-sequencing reads matched subtype 1 callingbypopulation Sanger sequencing(69%1b,31%1a) in 81 specimensandidentified amixed-subtype infection (1b/3a/1a) in one sample. Similarly,amongthe 32previously indeterminate specimens, identical genotypeandsubtype results were obtained by directanddeep sequencing in all but four samples with dual infection. In contrast, both VersantHCVGenotype 2.0andAbbott Real-timeHCVGenotype II failed subtype 1 calling in 13 (16%) samples eachandwere unable to identify theHCVgenotype and/or subtype inmore than half of the nongenotype 1 samples.Weconcluded that deep sequencing ismore efficient forHCVsubtyping than currently available methodsandallows qualitative identificationofmixed infectionsandmay bemorehelpfulwith respect to informing treatment strategies withnewDAA-containing regimens across allHCVsubtypesThis study has been supported by CDTI (Centro para el Desarrollo Tecnológico Industrial), Spanish Ministry of Economics and Competitiveness (MINECO), IDI-20110115; MINECO projects SAF 2009-10403; and also by the Spanish Ministry of Health, Instituto de Salud Carlos III (FIS) projects PI10/01505, PI12/01893, and PI13/00456. CIBERehd is funded by the Instituto de Salud Carlos III, Madrid, Spain. Work at CBMSO was supported by grant MINECO-BFU2011-23604, FIPSE, and Fundación Ramón Areces. X. Forns received unrestricted grant support from Roche and has acted as advisor for MSD, Gilead, and Abbvie. M. Alvarez-Tejado, J. Gregori, and J. M. Muñoz work in Roche Diagnostic

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959\,nm at R∼5000, or two shorter ranges at R∼20000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    No full text
    International audienceWEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ~ 5000, or two shorter ranges at R ~ 20 000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ~3 million stars and detailed abundances for ~1.5 million brighter field and open-cluster stars; (ii) survey ~0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ~400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator

    Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations

    No full text
    Background: Inborn errors of immunity (IEI) are rare diseases, which makes diagnosis a challenge. A better description of the initial presenting manifestations should improve awareness and avoid diagnostic delay. Although increased infection susceptibility is a well-known initial IEI manifestation, less is known about the frequency of other presenting manifestations. Objective: We sought to analyze age-related initial presenting manifestations of IEI including different IEI disease cohorts. Methods: We analyzed data on 16,486 patients of the European Society for Immunodeficiencies Registry. Patients with autoinflammatory diseases were excluded because of the limited number registered. Results: Overall, 68% of patients initially presented with infections only, 9% with immune dysregulation only, and 9% with a combination of both. Syndromic features were the presenting feature in 12%, 4% had laboratory abnormalities only, 1.5% were diagnosed because of family history only, and 0.8% presented with malignancy. Two-third of patients with IEI presented before the age of 6 years, but a quarter of patients developed initial symptoms only as adults. Immune dysregulation was most frequently recognized as an initial IEI manifestation between age 6 and 25 years, with male predominance until age 10 years, shifting to female predominance after age 40 years. Infections were most prevalent as a first manifestation in patients presenting after age 30 years. Conclusions: An exclusive focus on infection-centered warning signs would have missed around 25% of patients with IEI who initially present with other manifestations. (J Allergy Clin Immunol 2021;148:1332-41.
    corecore