11 research outputs found

    Locating Zika

    Get PDF
    The emergence of Zika virus challenged conventional ideas of mosquito-borne diseases, tested the resilience of health systems and embedded itself within local sociocultural worlds, with major implications for environmental, sexual, reproductive and paediatric health. This book explores this complex viral epidemic and situates it within its broader social, epidemiological and historical context in Latin America and the Caribbean. The chapters include a diverse set of case studies from scholars and health practitioners working across the region, from Brazil, Venezuela, Ecuador, Mexico, Colombia, the United States and Haiti. The book explores how mosquito-borne disease epidemics (not only Zika but also chikungunya, dengue and malaria) intersect with social change and health governance. By doing so, the authors reflect on the ways in which situated knowledge and social science approaches can contribute to more effective health

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Níveis disfuncionais de ansiedade relacionada ao Coronavírus em estudantes de medicina: Dysfunctional levels of Coronavirus-related anxiety in medical students

    Get PDF
    As preocupações com a saúde mental das pessoas afetadas pela pandemia de coronavírus não foram abordadas adequadamente. Isso é surpreendente, uma vez que tragédias em massa, particularmente aquelas que envolvem doenças infecciosas, muitas vezes desencadeiam ondas de medo e ansiedade elevados que são conhecidos por causar perturbações maciças no comportamento e no bem-estar psicológico de muitos na população. Assim, o objetivo desse trabalho é demonstrar os níveis disfuncionais de ansiedade relacionada ao coronavírus em estudantes de medicina. Para isso, foi realizado uma revisão sistemática sobre a temática

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Locating Zika

    No full text
    The emergence of Zika virus challenged conventional ideas of mosquito-borne diseases, tested the resilience of health systems and embedded itself within local sociocultural worlds, with major implications for environmental, sexual, reproductive and paediatric health. This book explores this complex viral epidemic and situates it within its broader social, epidemiological and historical context in Latin America and the Caribbean. The chapters include a diverse set of case studies from scholars and health practitioners working across the region, from Brazil, Venezuela, Ecuador, Mexico, Colombia, the United States and Haiti. The book explores how mosquito-borne disease epidemics (not only Zika but also chikungunya, dengue and malaria) intersect with social change and health governance. By doing so, the authors reflect on the ways in which situated knowledge and social science approaches can contribute to more effective health

    Duration of post-vaccination immunity against yellow fever in adults

    No full text
    Submitted by Nuzia Santos ([email protected]) on 2015-06-22T17:37:43Z No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2015-06-22T17:37:52Z (GMT) No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2015-06-22T17:58:36Z (GMT) No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5)Made available in DSpace on 2015-06-22T17:58:36Z (GMT). No. of bitstreams: 1 2014_152.pdf: 756403 bytes, checksum: c18d98237e29e19e785cf895a2a68ddc (MD5) Previous issue date: 2014Fundação Oswaldo Cruz. Brasilia, DF, BrasilFundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicosde Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos de Bio-Manguinhos. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Imunopatologia .Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Esquistossomose. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFundação Oswaldo Cruz. Centro de Pesquisa Rene Rachou. Laboratório de Biomarcadores. Belo Horizonte, MG, BrasilFood and Drug Administration Center for Biologics Evaluation and Research. Bethesda, USA.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratorio de Fla-vivirus. Rio de JaneiroFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratorio de Fla-vivirus. Rio de JaneiroFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratorio de Fla-vivirus. Rio de JaneiroInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilInstituto de Biologia do Exército. Rio de Janeiro, RJ, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilMinas Gerais. Secretaria Estadual de Saude. Belo Horizonte, MG, BrasilUniversidade Federal de Alfenas. Alfenas, MG, BrasilUniversidade de Brasília. Faculdade de Medicina. Brasilia, DF, BrasilFundação Oswaldo Cruz. Instituto Evandro Chagas. Ananindeua, PA, BrasilINTRODUCTION: Available scientific evidence to recommend or to advise against booster doses of yellow fever vaccine (YFV) is inconclusive. A study to estimate the seropositivity rate and geometric mean titres (GMT) of adults with varied times of vaccination was aimed to provide elements to revise the need and the timing of revaccination. METHODS: Adults from the cities of Rio de Janeiro and Alfenas located in non-endemic areas in the Southeast of Brazil, who had one dose of YFV, were tested for YF neutralising antibodies and dengue IgG. Time (in years) since vaccination was based on immunisation cards and other reliable records. RESULTS: From 2011 to 2012 we recruited 691 subjects (73% males), aged 18-83 years. Time since vaccination ranged from 30 days to 18 years. Seropositivity rates (95%C.I.) and GMT (International Units/mL; 95%C.I.) decreased with time since vaccination: 93% (88-96%), 8.8 (7.0-10.9) IU/mL for newly vaccinated; 94% (88-97), 3.0 (2.5-3.6) IU/mL after 1-4 years; 83% (74-90), 2.2 (1.7-2.8) IU/mL after 5-9 years; 76% (68-83), 1.7 (1.4-2.0) IU/mL after 10-11 years; and 85% (80-90), 2.1 (1.7-2.5) IU/mL after 12 years or more. YF seropositivity rates were not affected by previous dengue infection. CONCLUSIONS:Eventhough serological correlates of protection for yellow fever are unknown, seronegativity in vaccinated subjects may indicate primary immunisation failure, or waning of immunity to levels below the protection threshold. Immunogenicity of YFV under routine conditions of immunisation services is likely to be lower than in controlled studies. Moreover, infants and toddlers, who comprise the main target group in YF endemic regions, and populations with high HIV infection rates, respond to YFV with lower antibody levels. In those settings one booster dose, preferably sooner than currently recommended, seems to be necessary to ensure longer protection for all vaccinee
    corecore