59 research outputs found

    Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome

    Get PDF
    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome wide siRNA screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies

    The dUTPase Enzyme Is Essential in Mycobacterium smegmatis

    Get PDF
    Thymidine biosynthesis is essential in all cells. Inhibitors of the enzymes involved in this pathway (e.g. methotrexate) are thus frequently used as cytostatics. Due to its pivotal role in mycobacterial thymidylate synthesis dUTPase, which hydrolyzes dUTP into the dTTP precursor dUMP, has been suggested as a target for new antitubercular agents. All mycobacterial genomes encode dUTPase with a mycobacteria-specific surface loop absent in the human dUTPase. Using Mycobacterium smegmatis as a fast growing model for Mycobacterium tuberculosis, we demonstrate that dUTPase knock-out results in lethality that can be reverted by complementation with wild-type dUTPase. Interestingly, a mutant dUTPase gene lacking the genus-specific loop was unable to complement the knock-out phenotype. We also show that deletion of the mycobacteria-specific loop has no major effect on dUTPase enzymatic properties in vitro and thus a yet to be identified loop-specific function seems to be essential within the bacterial cell context. In addition, here we demonstrated that Mycobacterium tuberculosis dUTPase is fully functional in Mycobacterium smegmatis as it rescues the lethal knock-out phenotype. Our results indicate the potential of dUTPase as a target for antitubercular drugs and identify a genus-specific surface loop on the enzyme as a selective target

    Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope.

    Get PDF
    Infectious diseases are becoming a major menace to the state of health worldwide, with difficulties in effective treatment especially of nosocomial infections caused by Gram-negative bacteria being increasingly reported. Inadequate permeation of anti-infectives into or across the Gram-negative bacterial cell envelope, due to its intrinsic barrier function as well as barrier enhancement mediated by resistance mechanisms, can be identified as one of the major reasons for insufficient therapeutic effects. Several in vitro, in silico, and in cellulo models are currently employed to increase the knowledge of anti-infective transport processes into or across the bacterial cell envelope; however, all such models exhibit drawbacks or have limitations with respect to the information they are able to provide. Thus, new approaches which allow for more comprehensive characterization of anti-infective permeation processes (and as such, would be usable as screening methods in early drug discovery and development) are desperately needed. Furthermore, delivery methods or technologies capable of enhancing anti-infective permeation into or across the bacterial cell envelope are required. In this respect, particle-based carrier systems have already been shown to provide the opportunity to overcome compound-related difficulties and allow for targeted delivery. In addition, formulations combining efflux pump inhibitors or antimicrobial peptides with anti-infectives show promise in the restoration of antibiotic activity in resistant bacterial strains. Despite considerable progress in this field however, the design of carriers to specifically enhance transport across the bacterial envelope or to target difficult-to-treat (e.g., intracellular) infections remains an urgently needed area of improvement. What follows is a summary and evaluation of the state of the art of both bacterial permeation models and advanced anti-infective formulation strategies, together with an outlook for future directions in these fields

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding

    RPGRIP1L mutations are mainly associated with the cerebello-renal phenotype of Joubert syndrome-related disorders

    No full text
    Joubert syndrome-related disorders (JSRDs) are autosomal recessive pleiotropic conditions sharing a peculiar cerebellar and brainstem malformation known as the 'molar tooth sign' (MTS). Recently, mutations in a novel ciliary gene, RPGRIP1L, have been shown to cause both JSRDs and Meckel-Gruber syndrome. We searched for RPGRIP1L mutations in 120 patients with proven MTS and phenotypes representative of all JSRD clinical subgroups. Two homozygous mutations, the previously reported p.T615P in exon 15 and the novel c.2268_2269delA in exon 16, were detected in 2 of 16 families with cerebello-renal presentation (similar to 12%). Conversely, no pathogenic changes were found in patients with other JSRD phenotypes, suggesting that RPGRIP1L mutations are largely confined to the cerebello-renal subgroup, while they overall represent a rare cause of JSRD (< 2%)

    AHI1 gene mutations cause specific forms of Joubert syndrome-related disorders

    No full text
    Joubert syndrome (JS) is a recessively inherited developmental brain disorder with several identified causative chromosomal loci. It is characterized by hypoplasia of the cerebellar vermis and a particular midbrain-hindbrain "molar tooth" sign, a finding shared by a group of Joubert syndrome-related disorders (JSRDs), with wide phenotypic variability. The frequency of mutations in the first positionally cloned gene, AHI1, is unknown. Methods: We searched for mutations in the AHI1 gene among a cohort of 137 families with JSRD and radiographically proven molar tooth sign. Results: We identified 15 deleterious mutations in 10 families with pure JS or JS plus retinal and/or additional central nervous system abnormalities. Mutations among families with JSRD including kidney or liver involvement were not detected. Transheterozygous mutations were identified in the majority of those without history of consanguinity. Most mutations were truncating or splicing errors, with only one missense mutation in the highly conserved WD40 repeat domain that led to disease of similar severity. Interpretation AHI1 mutations are a frequent cause of disease in patients with specific forms of JSRD
    • …
    corecore