27 research outputs found

    The QUEST large area CCD camera

    Get PDF
    We have designed, constructed, and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back-illuminated devices with 13 µm x 13 µm pixels. The camera covers an area of 4.6° x 3.6° on the sky with an active area of 9.6 deg_2. This camera has been installed at the prime focus of the telescope and commissioned, and scientific-quality observations on the Palomar-QUEST Variability Sky Survey were started in 2003 September. The design considerations, construction features, and performance parameters of this camera are described in this paper

    Spectroastrometry of rotating gas disks for the detection of supermassive black holes in galactic nuclei. II. Application to the galaxy Centaurus A (NGC 5128)

    Full text link
    We measure the black hole mass in the nearby active galaxy Centaurus A (NGC 5128) using a new method based on spectroastrometry of a rotating gas disk. The spectroastrometric approach consists in measuring the photocenter position of emission lines for different velocity channels. In a previous paper we focused on the basic methodology and the advantages of the spectroastrometric approach with a detailed set of simulations demonstrating the possibilities for black hole mass measurements going below the conventional spatial resolution. In this paper we apply the spectroastrometric method to multiple longslit and integral field near infrared spectroscopic observations of Centaurus A. We find that the application of the spectroastrometric method provides results perfectly consistent with the more complex classical method based on rotation curves: the measured BH mass is nearly independent of the observational setup and spatial resolution and the spectroastrometric method allows the gas dynamics to be probed down to spatial scales of ~0.02", i.e. 1/10 of the spatial resolution and ~1/50 of BH sphere of influence radius. The best estimate for the BH mass based on kinematics of the ionized gas is then log(MBH (sin i)^2/M\odot)=7.5 \pm 0.1 which corresponds to MBH = 9.6(+2.5-1.8) \times 10^7 M\odot for an assumed disk inclination of i = 35deg. The complementarity of this method with the classic rotation curve method will allow us to put constraints on the disk inclination which cannot be otherwise derived from spectroastrometry. With the application to Centaurus A, we have shown that spectroastrometry opens up the possibility of probing spatial scales smaller than the spatial resolution, extending the measured MBH range to new domains which are currently not accessible: smaller BHs in the local universe and similar BHs in more distant galaxies

    The statistical analysis of acoustic phonetic data: exploring differences between spoken Romance languages

    Get PDF
    The historical and geographical spread from older to more modern languages has long been studied by examining textual changes and in terms of changes in phonetic transcriptions. However, it is more difficult to analyze language change from an acoustic point of view, although this is usually the dominant mode of transmission. We propose a novel analysis approach for acoustic phonetic data, where the aim will be to statistically model the acoustic properties of spoken words. We explore phonetic variation and change using a time-frequency representation, namely the log-spectrograms of speech recordings. We identify time and frequency covariance functions as a feature of the language; in contrast, mean spectrograms depend mostly on the particular word that has been uttered. We build models for the mean and covariances (taking into account the restrictions placed on the statistical analysis of such objects) and use these to define a phonetic transformation that models how an individual speaker would sound in a different language, allowing the exploration of phonetic differences between languages. Finally, we map back these transformations to the domain of sound recordings, allowing us to listen to the output of the statistical analysis. The proposed approach is demonstrated using recordings of the words corresponding to the numbers from ``one'' to ``ten'' as pronounced by speakers from five different Romance languages.John Coleman appreciates the support of UK Arts and Humanities Research Council grant AH/M002993/1, “Ancient Sounds: mixing acoustic phonetics, statistics and comparative philology to bring speech back from the past”. John Aston appreciates the support of UK Engineering and Physical Sciences Research Council grant EP/K021672/2, “Functional Object Data Analysis and its Applications”

    A Deep HST H-Band Imaging Survey of Massive Gas-Rich Mergers. II. The QUEST PG QSOs

    Full text link
    We report the results from a deep HST NICMOS H-band imaging survey of 28 z < 0.3 QSOs from the Palomar-Green (PG) sample. This program is part of QUEST (Quasar / ULIRG Evolution STudy) and complements a similar set of data on 26 highly-nucleated ULIRGs presented in Paper I. Our analysis indicates that the fraction of QSOs with elliptical hosts is higher among QSOs with undetected far-infrared (FIR) emission, small infrared excess, and luminous hosts. The hosts of FIR-faint QSOs show a tendency to have less pronounced merger-induced morphological anomalies and larger QSO-to-host luminosity ratios on average than the hosts of FIR-bright QSOs, consistent with late-merger evolution from FIR-bright to FIR-faint QSOs. The spheroid sizes and total host luminosities of the radio-quiet PG QSOs in our sample are statistically indistinguishable from the ULIRG hosts presented in Paper I, while those of radio-loud PG QSOs are systematically larger and more luminous. ULIRGs and PG QSOs with elliptical hosts fall near, but not exactly on, the fundamental plane of inactive spheroids. We confirm the systematic trend noted in Paper I for objects with small (< 2 kpc) spheroids to be up to ~1 mag. brighter than inactive spheroids. The host colors and wavelength dependence of their sizes support the idea that these deviations are due at least in part to non-nuclear star formation. However, the amplitudes of these deviations does not depend on host R-H colors. Taken at face value (i.e., no correction for extinction or the presence of a young stellar population), the H-band spheroid-host luminosities imply BH masses ~5 -- 200 x 10^7 M_sun and sub-Eddington mass accretion rates for both QSOs and ULIRGs. These results are compared with published BH mass estimates derived from other methods. (abridged)Comment: Accepted for publication in the Astrophysical Journal, Vol. 701, August 20 issue. Paper with high-resolution figures can be downloaded at http://www.astro.umd.edu/~veilleux/pubs/nicmos2.pd

    High energy radiation from Centaurus A

    Full text link
    We calculate for the nearest active galactic nucleus (AGN), Centaurus A, the flux of high energy cosmic rays and of accompanying secondary photons and neutrinos expected from hadronic interactions in the source. We use as two basic models for the generation of ultrahigh energy cosmic rays (UHECR) shock acceleration in the radio jet and acceleration in the regular electromagnetic field close to the core of the AGN. While scattering on photons dominates in scenarios with acceleration close to the core, scattering on gas becomes more important if acceleration takes place along the jet. Normalizing the UHECR flux from Centaurus A to the observations of the Auger experiment, the neutrino flux may be marginally observable in a 1 km3^3 neutrino telescope, if a steep UHECR flux \d N/\d E\propto E^{-\alpha} with α=2.7\alpha=2.7 extends down to 101710^{17} eV. The associated photon flux is close to or exceeds the observational data of atmospheric Cherenkov and γ\gamma-ray telescopes for \alpha\gsim 2. In particular, we find that already present data favour either a softer UHECR injection spectrum than α=2.7\alpha=2.7 for Centaurus A or a lower UHECR flux than expected from the normalization to the Auger observations.Comment: 12 pages, 6 figures; v2: revised version to appear in a special issue of New Journal for Physic

    Basal and antigen-induced exposure of the proline-rich sequence in CD3ε.

    Get PDF
    The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck
    corecore