129 research outputs found

    Fast energy transfer mediated by multi-quanta bound states in a nonlinear quantum lattice

    Full text link
    By using a Generalized Hubbard model for bosons, the energy transfer in a nonlinear quantum lattice is studied, with special emphasis on the interplay between local and nonlocal nonlinearity. For a strong local nonlinearity, it is shown that the creation of v quanta on one site excites a soliton band formed by bound states involving v quanta trapped on the same site. The energy is first localized on the excited site over a significant timescale and then slowly delocalizes along the lattice. As when increasing the nonlocal nonlinearity, a faster dynamics occurs and the energy propagates more rapidly along the lattice. Nevertheless, the larger is the number of quanta, the slower is the dynamics. However, it is shown that when the nonlocal nonlinearity reaches a critical value, the lattice suddenly supports a very fast energy propagation whose dynamics is almost independent on the number of quanta. The energy is transfered by specific bound states formed by the superimposition of states involving v-p quanta trapped on one site and p quanta trapped on the nearest neighbour sites, with p=0,..,v-1. These bound states behave as independent quanta and they exhibit a dynamics which is insensitive to the nonlinearity and controlled by the single quantum hopping constant.Comment: 28 pages, 8 figure

    Spatial variability of CO \u3c inf\u3e 2 uptake in polygonal tundra: Assessing low-frequency disturbances in eddy covariance flux estimates

    Get PDF
    The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snowmelt and introduced a large bias of -46 gCm-2 to the annual CO22 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations with the ogive optimization method indicated that the site was a strong sink for CO2 in 2015 (82 gCm2). Due to differences in light-use efficiency, wetter areas with lowcentered polygons sequestered 47% more CO2 than drier areas with flat-centered polygons. While Svalbard has experienced a strong increase in mean annual air temperature of more than 2K in the last few decades, historical aerial photographs from the site indicated stable ice-wedge morphology over the last 7 decades. Apparently, warming has thus far not been sufficient to initiate strong ice-wedge degradation, possibly due to the absence of extreme heat episodes in the maritime climate on Svalbard. However, in Arctic regions where ice-wedge degradation has already initiated the associated drying of landscapes, our results suggest a weakening of the CO2 sink in polygonal tundra

    Two-vibron bound states in alpha-helix proteins : the interplay between the intramolecular anharmonicity and the strong vibron-phonon coupling

    Full text link
    The influence of the intramolecular anharmonicity and the strong vibron-phonon coupling on the two-vibron dynamics in an α\alpha-helix protein is studied within a modified Davydov model. The intramolecular anharmonicity of each amide-I vibration is considered and the vibron dynamics is described according to the small polaron approach. A unitary transformation is performed to remove the intramolecular anharmonicity and a modified Lang-Firsov transformation is applied to renormalize the vibron-phonon interaction. Then, a mean field procedure is realized to obtain the dressed anharmonic vibron Hamiltonian. It is shown that the anharmonicity modifies the vibron-phonon interaction which results in an enhancement of the dressing effect. In addition, both the anharmonicity and the dressing favor the occurrence of two different bound states which the properties strongly depend on the interplay between the anharmonicity and the dressing. Such a dependence was summarized in a phase diagram which characterizes the number and the nature of the bound states as a function of the relevant parameters of the problem. For a significant anharmonicity, the low frequency bound states describe two vibrons trapped onto the same amide-I vibration whereas the high frequency bound states refer to the trapping of the two vibrons onto nearest neighbor amide-I vibrations.Comment: may 2003 submitted to Phys. Rev.

    Suppression of the spin waves nonreciprocity due to interfacial Dzyaloshinskii Moriya interaction by lateral confinement in magnetic nanostructures

    Full text link
    Despite the huge recent interest towards chiral magnetism related to the interfacial Dzyaloshinskii Moriya interaction (iDMI) in layered systems, there is a lack of experimental data on the effect of iDMI on the spin waves eigenmodes of laterally confined nanostructures. Here we exploit Brillouin Light Scattering (BLS) to analyze the spin wave eigenmodes of non-interacting circular and elliptical dots, as well as of long stripes, patterned starting from a Pt(3.4 nm)/CoFeB(0.8 nm) bilayer, with lateral dimensions ranging from 100 nm to 400 nm. Our experimental results, corroborated by micromagnetic simulations based on the GPU-accelerated MuMax3 software package, provide evidence for a strong suppression of the frequency asymmetry between counter-propagating spin waves (corresponding to either Stokes or anti-Stokes peaks in BLS spectra), when the lateral confinement is reduced from 400 nm to 100 nm, i.e. when it becomes lower than the light wavelength. Such an evolution reflects the modification of the spin wave character from propagating to stationary and indicates that the BLS based method of quantifying the i-DMI strength from the frequency difference of counter propagating spin waves is not applicable in the case of magnetic elements with lateral dimension below about 400 nm.Comment: Accepted for pubblication by: Physical Review

    Boundary effects on quantum q-breathers in a Bose-Hubbard chain

    Full text link
    We investigate the spectrum and eigenstates of a Bose-Hubbard chain containing two bosons with fixed boundary conditions. In the noninteracting case the eigenstates of the system define a two-dimensional normal-mode space. For the interacting case weight functions of the eigenstates are computed by perturbation theory and numerical diagonalization. We identify paths in the two-dimensional normal-mode space which are rims for the weight functions. The decay along and off the rims is algebraic. Intersection of two paths (rims) leads to a local enhancement of the weight functions. We analyze nonperturbative effects due to the degeneracies and the formation of two-boson bound states.Comment: 10 pages, 11 figures. With minor corrections. Accepted in Physica

    Discrete Breathers

    Full text link
    Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices - quantum breathers. Finally we will formulate a new conceptual aproach capable of predicting whether discrete breather exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.Comment: 62 pages, LaTeX, 14 ps figures. Physics Reports, to be published; see also at http://www.mpipks-dresden.mpg.de/~flach/html/preprints.htm
    corecore