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Abstract. The large spatial variability in Arctic tundra com-
plicates the representative assessment of CO, budgets. Ac-
curate measurements of these heterogeneous landscapes are,
however, essential to understanding their vulnerability to
climate change. We surveyed a polygonal tundra lowland
on Svalbard with an unmanned aerial vehicle (UAV) that
mapped ice-wedge morphology to complement eddy covari-
ance (EC) flux measurements of CO;. The analysis of spec-
tral distributions showed that conventional EC methods do
not accurately capture the turbulent CO, exchange with a
spatially heterogeneous surface that typically features small
flux magnitudes. Nonlocal (low-frequency) flux contribu-
tions were especially pronounced during snowmelt and in-
troduced a large bias of —46gCm™2 to the annual CO,
budget in conventional methods (the minus sign indicates a
higher uptake by the ecosystem). Our improved flux calcula-
tions with the ogive optimization method indicated that the
site was a strong sink for CO, in 2015 (—82 gCm™?2). Due
to differences in light-use efficiency, wetter areas with low-
centered polygons sequestered 47 % more CO; than drier ar-
eas with flat-centered polygons. While Svalbard has experi-
enced a strong increase in mean annual air temperature of
more than 2 K in the last few decades, historical aerial pho-
tographs from the site indicated stable ice-wedge morphol-
ogy over the last 7 decades. Apparently, warming has thus
far not been sufficient to initiate strong ice-wedge degrada-

tion, possibly due to the absence of extreme heat episodes in
the maritime climate on Svalbard. However, in Arctic regions
where ice-wedge degradation has already initiated the asso-
ciated drying of landscapes, our results suggest a weakening
of the CO; sink in polygonal tundra.

1 Introduction

Arctic tundra is often covered with polygonal ground pat-
terns created by subsurface ice wedges (Leffingwell, 1915;
Mackay, 1974; Romanovskii, 1985; Minke et al., 2007).
While ice wedges need centuries or millennia to form
through the infiltration and refreezing of meltwater in ther-
mal contraction cracks, they have been reported to degrade
rapidly during the last decades with permafrost warming,
which significantly alters soil drainage and moisture (Fortier
et al., 2007; Liljedahl et al., 2016). Especially in the high
Arctic where permafrost warming occurs the fastest (Ro-
manovsky et al., 2010), these hydrological changes can in-
fluence the land—atmosphere exchange of greenhouse gases,
such as carbon dioxide (CO»), which could affect the long-
term carbon sink function of these ecosystems (Schuur et al.,
2015; Jorgenson et al., 2015).

Carbon dioxide fluxes in polygonal tundra are character-
ized by large spatial variability, which complicates their ac-
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curate assessment over larger areas (McGuire et al., 2012).
On a scale of hectares to km?, the micrometeorological eddy
covariance (EC) technique has become widely used to mea-
sure the net ecosystem exchange of CO, (NEE) because it
provides a good compromise between directness of mea-
surement, ecosystem disturbance, and technical reliability.
The EC technique estimates NEE integrated over an upwind
footprint area based on point measurements of the covari-
ance of vertical wind speed and CO;, concentration (Aubi-
net et al., 2012). Careful calculations have been found to
provide defensible estimates of the true CO, flux, with the
main systematic uncertainties stemming from nonsteady at-
mospheric conditions, heterogeneous surfaces, and complex
terrain (Baldocchi, 2003). Large-scale surface heterogeneity
has been observed and simulated to induce thermal circu-
lations on the mesoscale that can impede the turbulent flux
estimation (Mahrt et al., 1994; Inagaki et al., 2006), and
complex terrain may lead to horizontal advection of gases
and thereby biased flux estimations (Finnigan et al., 2003;
Aubinet et al., 2010). Finnigan et al. (2003) showed that the
averaging operation and coordinate rotation commonly ap-
plied in EC flux calculations can lead to co-spectral distor-
tions and a loss of flux in measurements over tall canopies
(forests), even though it is not evident that the same holds for
the short-statured vegetation of the tundra where measure-
ments are taken well above the roughness sublayer. Other
difficulties relate to the employed measurement instruments,
such as open-path gas analyzers, which can introduce a bias
due to surface heating of the instrument itself (Burba et al.,
2008). Results from different conventionally used software
packages for EC calculations have been shown to agree in
temperate grasslands and forests (Fratini and Mauder, 2014),
but the typically low flux magnitudes in high Arctic environ-
ments pose considerable challenges for the correct estima-
tion of EC fluxes (Sievers et al., 2015a). Special care must be
taken during the long cold season when small CO; releases
can add up to a significant portion of the total annual carbon
budget (Fahnestock et al., 1999; Bjorkman et al., 2010; Liiers
et al., 2014).

Across the Arctic tundra, previous studies have shown
differing CO, budgets depending on the characteristics of
the landscape. Eddy covariance CO; flux measurements
from a well-studied high Arctic tundra site in northeast-
ern Greenland indicate a considerable annual carbon sink
(—64¢C m~2) in a wet fen (Soegaard and Nordstroem,
1999), while the neighboring dry heath constitutes a weaker
sink on average (—21gC m~2) (Lund et al., 2012). Mea-
surements from Alaskan tussock tundra show that nongrow-
ing season releases of CO;, can also exceed the growing
season uptake, rendering the ecosystem a small net annual
source (+14gC m~2) (Oechel et al., 2014). A wet tussock
grassland in NE Siberia was found to be a moderate an-
nual sink (—38¢gC m_2) (Corradi et al., 2005), while wet
polygonal tundra in the Lena River delta was estimated to be
a weaker annual CO; sink (—19 gC m~2) (Kutzbach et al.,
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2007). Some of these studies rely on modeled fluxes to fill
large data gaps during wintertime, which increases the un-
certainty in the annual sums.

As opposed to other permafrost-underlain regions where
soils could become wetter in the future (Natali et al., 2011;
Johansson et al., 2013), polygonal tundra is predicted to
dry upon permafrost degradation (Liljedahl et al., 2016); the
ground above melting ice wedges subsides, which intercon-
nects the polygon troughs and creates an effective drainage
network for the wet polygon centers (Fortier et al., 2007).
This simultaneous wetting of polygon troughs and drying
of polygon centers is a signature that can be detected in
time series of historical aerial photographs to provide large-
scale evidence of the process (Necsoiu et al., 2013). Lil-
jedahl et al. (2016) described such ice-wedge degradation
as a widespread Arctic phenomenon that changed surface
drainage patterns in less than 1 decade. To study the progres-
sive change in plant communities and biogeochemistry fol-
lowing such a disturbance, space-for-time substitutions have
proven to be a powerful tool (Rastetter, 1996). The associ-
ated hydrological changes have thus been linked to signifi-
cant changes in carbon fluxes in Alaskan polygonal tundra
during the growing season (Lara et al., 2015; Vaughn et al.,
2016), but their year-round effect on an ecosystem’s CO;
budget has yet to be quantified.

Such an assessment could be improved by high-resolution
topographical surveys using unmanned aerial vehicles
(UAVs). Apart from the visual picture that UAVs provide, se-
ries of photographs from multiple angles allow for the recon-
struction of the 3-D geometry of the surface (Ullman, 1979;
Westoby et al., 2012), which can give valuable insights into
the drainage patterns. In the present study, we explore the
potential of this technique in combination with EC CO, flux
measurements in polygonal tundra on Svalbard to character-
ize the spatial heterogeneity of the ecosystem. We aim to un-
derstand how the spatial heterogeneity and larger-scale dis-
turbances affect EC flux estimates by investigating the spec-
tral composition of the EC signal. We further relate the spa-
tial differences in NEE to the observed historical and pre-
dicted future evolution of ice-wedge polygons.

2 Materials and methods
2.1 Site description

The field site is located at the bottom of a large, permafrost-
underlain, glacial valley called Adventdalen on Spitsber-
gen, Svalbard, approximately 6 km from a fjord (78°11'N,
15°55'E). The surrounding mountains feature plateaus
of around 450ma.s.l. and peaks and ridges of up to
1000 m a.s.l., which are still partly glaciated (De Haas et al.,
2015). Wind directions are generally oriented along the val-
ley with dominating easterlies in wintertime (coming from
inland Spitsbergen) and an approximately even distribution

www.biogeosciences.net/14/3157/2017/
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of easterlies and westerlies in summertime (westerlies com-
ing from the fjord). Long-term statistics indicate that wind
speeds in Adventdalen are below Sms~! for about 70 % of
the year (and below 10 m s~! for about 97 %) with the most
frequent wind speed at about 3ms~!. The mean annual air
temperature at the closest weather station (Svalbard airport,
approximately 10 km away) was —6.7 °C between 1961 and
1990 (Fgrland et al., 2012); it increased to —3.75°C in the
period between 2000 and 2011 (Christiansen et al., 2013).
The total annual precipitation is about 190 mm, of which
about half falls as snow (Fgrland et al., 2012). The mea-
surement site is located on a river terrace on the flat part
of a large alluvial fan where the ground is patterned by ice-
wedge polygons (Christiansen, 2005; Harris et al., 2009).
These coarse alluvial deposits are covered with a few tens
centimeters of organic material and fine-grained eolian de-
posits (loess), which typically stem from wind erosion in the
braided riverbed when it dries out in autumn (Bryant, 1982;
Oliva et al., 2014). The site’s soil organic carbon content in
the uppermost 100 cm of soil is about 30 kgC m~2 (P. Kuhry,
personal communication, 2016). The vegetation at the Ad-
ventdalen site features Salix polaris in drier areas and Erio-
phorum scheuchzeri and Carex subspathacea in wetter lo-
cations. The moss cover is sparse in drier polygons where
shrubs dominate the vegetation community, while the wetter
areas at local depressions feature an almost continuous moss
cover. Within individual polygons, the moss coverage typi-
cally increases from the drier rim to the wetter center.

2.2 Measurement setup

The EC setup consisted of a top-mounted ultrasonic
anemometer (USA-1; Metek GmbH, Germany) and an in-
frared gas analyzer (Li-7200; Li-Cor Inc., USA), both of
which sampled and recorded data at a rate of 10 Hz. The
measurement height was 2.8 m above ground level. From
there the gas was pumped to the Li-7200 at a flow rate of
15Lmin~! via a 1 m long insulated intake tube supplied by
the manufacturer.

Ancillary meteorological measurements (e.g., solar radi-
ation, snow and soil temperatures) were collected on and
around the same tower, sampled every 10s, and averaged to
30 min values. Due to the relatively remote location with-
out line power, the system was supplied by lead—acid batter-
ies charged by a wind generator (350 W peak output), solar
panels (275 W peak output), and a fuel cell in summertime
(90 W).

Complementary to the EC setup, we measured NEE in the
EC footprint with a set of five transparent, automatically op-
erated flux chambers using the closed-chamber technique.
These chambers were connected to a gas analyzer (SBA-4;
PP Systems, UK) that measured CO; concentrations at a rate
of 0.625 Hz. Flux estimates were derived from an exponen-
tial least-squares regression of the 5 min closure time of the
concentration time series. The details of this measurement
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system and flux estimation procedure are provided in Pirk
et al. (2016b) and the references therein.

To assess differences in the active layer depth, thaw depths
were probed at the centers of 30 polygons in the EC footprint
at the end of August 2016.

2.3 Data processing

Eddy covariance flux estimates were derived using the re-
cently proposed ogive optimization method (version 1.0.5;
toolbox publicly available through the Mathworks file ex-
change) (Sievers et al., 2015b). In this context, ogives are
cumulative co-spectra of vertical wind speed (w) and CO;
concentration, which is denoted Og (w, CO»), i.e., a spec-
tral decomposition of the EC flux estimate. The method op-
timizes a spectral distribution model (Desjardins et al., 1989;
Lee et al., 2006; Foken et al., 2006) to a density map of
14 000 ogives obtained by varying the dataset length and de-
trending interval. The key to this method is the assumption
of a dynamic spectral gap between often overlapping spec-
tral flux contributions (Sievers et al., 2015b). This approach
effectively separates the turbulent flux from contributions
of larger-scale motions (mesoscale atmospheric movements),
which can give nonlocal flux contributions at low frequencies
(Aubinet et al., 2012; Sievers et al., 2015b).

To further investigate the effect of low-frequency contri-
butions, we compared ogive optimization to the widely used
EddyPro software package (Li-Cor Inc.; version 6.1.0), fol-
lowing the conventional assumption about the presence of a
fixed spectral gap corresponding to the 30 min flux averaging
interval. We used simple linear de-trending and applied spec-
tral corrections according to Moncrieff et al. (1997, 2004)
(EddyPro default).

Both EddyPro and ogive optimization perform basic qual-
ity control and preprocessing of the 10 Hz raw data follow-
ing Vickers and Mahrt (1997) (e.g., gap detection, spike re-
moval, signal alignment, anemometer tilt correction). Unac-
ceptable raw data were not processed further. To ensure suf-
ficient turbulent mixing near the surface, we also filtered out
data points with a friction velocity smaller than 0.1 ms~! for
both methods. Ogive optimization furthermore only accepts
periods with a negative momentum flux (i.e., directed to-
ward the ground surface) in the mid-frequency range (tested
at around 0.032 Hz), which is the energy-containing range.
Following Foken and Wichura (1996), EddyPro fluxes were
additionally filtered for nonsteady wind conditions (discard-
ing fluxes with quality flag 2). Calculated ogive optimization
fluxes, on the other hand, were only discarded if the mod-
eled ogive spectral distribution could not describe the data
sufficiently. These filters, in addition to downtime caused by
technical problems, led to an overall data coverage with valid
fluxes of 45 % in 2015 for the ogive optimization and 35 %
for EddyPro. A large number of these flux calculations have
been visually inspected to ensure that the methods performed
as expected. In this analysis, we noticed that the automati-
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cally determined time lags between w and CO; concentration
varied unrealistically, which introduced noise to the fluxes,
especially at low magnitudes. We therefore used a constant
value of 0.3 s (i.e., the typically expected time lag given our
setup) for the flux calculation with both methods.

We mainly focused on data collected between September
2014 and December 2015 when data quality and coverage
were the highest. Carbon dioxide concentrations collected
in 2013 were only recorded as molar densities without the
cell pressure necessary for a sample-by-sample conversion to
mixing ratios according to the Webb—Pearman—Leuning cor-
rection proposed by Sahlée et al. (2008), which is currently
the only option implemented in the ogive optimization soft-
ware. Hence, we only report 2013 fluxes from EddyPro as
supplementary support for our findings.

Subsequently, the calculated NEE was used to determine
the ecosystem’s light response characteristics during the
snow-free period (the beginning of June until the end of
September). One way to parameterize the relationship be-
tween NEE and incoming photosynthetically active radiation
(PAR) is the Misterlich function:

o PAR
NEE:—(chat+Rd) 1—eXp _F—-l—Rd +Rds (1)
csat

where the three parameters Fegar, Rq, and « correspond to
the flux at light saturation, dark respiration, and light-use ef-
ficiency, respectively (e.g., Falge et al., 2001). Such light re-
sponse curves can yield further insights into the underlying
drivers of NEE. These parameters were derived from least-
squares regressions of measured NEE and PAR (derived from
shortwave incoming radiation) in a rolling time window of
10 days, which was successively increased by 1 day if fewer
than 100 valid NEE-PAR measurements were available, fol-
lowing Lund et al. (2012).

For cumulative flux calculations and annual sums we em-
ployed the gap-filling algorithm proposed by Reichstein et al.
(2005), which operates on the basis of mean diurnal varia-
tions in temperature, incoming shortwave radiation, and va-
por pressure deficit as drivers for NEE. As some of the gaps
in our NEE measurements were caused by power outages
(when the entire measurement system shut down), the an-
cillary data for gap filling were taken from the New Advent-
dalen Weather Station (run by the University Centre in Sval-
bard) with a distance of about 2.5 km from our site. This pro-
cedure yielded the best gap-filling quality (class A) in 96 %
of the flux estimates that had to be gap filled in 2015. Still,
gaps in NEE measurements can be assumed to dominate the
total random error in the annual sums (Aurela et al., 2002).
To quantify this uncertainty, we tested the sensitivity of the
annual sums to artificially added gaps in the NEE time se-
ries. Since the uncertainty introduced by a gap depends on
its length and the time of year, we repeated the gap filling on
300 different time series obtained by adding single gaps of
between 1 and 23 days (i.e., 2 days longer than our longest
gap) that were equally distributed over the year (starting ev-
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ery 15 days). The resulting distribution of annual sums was
used to assess the result’s random error.

The EC footprint estimation was performed according to
Kljun et al. (2015) using a fixed zero-plane displacement of
10cm and a roughness length of 1 cm. Wind and turbulence
parameters were derived from 30 min intervals, while the ad-
ditionally needed boundary layer height was taken from the
closest point of the ERA-Interim meteorological reanalysis
(Dee et al., 2011).

2.4 Topographical survey

We conducted a topographical survey of the Adventdalen ice-
wedge site by employing photogrammetry with aerial pho-
tographs to produce a visual map and digital elevation model.
To this end, 135 photographs were taken with a camera (Go-
Pro Hero3+ Black Edition) from a UAV (DJI Flame Wheel
F550) at a height of 60ma.g.l. in June 2015. This survey
covered an area of about 0.1km? at a ground resolution of
about 3.2cm pixel™!; 22 ground control points were col-
lected with a differential GPS (Leica GPS1200 SmartRover)
to ortho-rectify the images and estimate the uncertainty in
the resulting elevation model (see Fig. S5 in the Supple-
ment for details). The GPS data were post-processed and
differentially corrected using data from the local Longyear-
byen GNSS satellite base station (LYRS), which are freely
available from the Norwegian Mapping Authority. The pho-
togrammetric processing was performed using Agisoft Pho-
toScan (Agisoft LLC, St. Petersburg, Russia), which imple-
ments the structure-from-motion technique to reconstruct the
3-D geometry of the ground surface from a sequence of
photographs taken from multiple viewpoints (Ullman, 1979;
Snavely et al., 2008; Westoby et al., 2012; Lucieer et al.,
2014).

To assess the evolution of the morphology of the ice-
wedge site, we compared our map from 2015 to historical
aerial photographs taken in 1948, 1961, and 1990, which
were georeferenced with the 2015 map as a reference. Reli-
ably quantifying the changes between these images was com-
plicated by different shadows and differences in the overall
soil moisture when the images were taken, so we only per-
formed a qualitative change detection by visual comparison.

3 Results

Figure 1 shows the results of the topographical survey and
the EC footprint for June 2015. As the wind direction typi-
cally aligns with the valley’s direction, there are two clearly
distinct footprint areas in the NW and ESE. The high resolu-
tion of this elevation map resolves small elevation differences
of only a few decimeters, which can be seen to affect sur-
face inundation and soil wetness. Both footprints have over-
all surface slopes toward the edge of the river terrace in the
north (approximately 0.75 % slope), but their drainage pat-
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Figure 1. Map of the site in Adventdalen (coordinates in UTM zone 33X). The red cross marks the EC tower, around which the contour
lines indicate the area’s relative contribution to the EC signal (footprints) averaged over June 2015. Six automatic flux chambers are located
in the NW footprint (bright dots). (a) Ortho-rectified aerial photograph from the end of June 2015. (b) Corresponding surface elevation with

an estimated vertical uncertainty of 0.2 m.

terns appear to be separated, creating a wetter sub-catchment
in the NW than in the ESE. Low-centered polygons domi-
nate the site, but the NW features more distinctly wet poly-
gon centers. The thaw depth at the centers of the polygons
around the EC tower was 66 cm =+ 9 cm (mean =+ SD; sample
size N = 30) by the end of August. Based on the polygons
in the 50 % EC footprint, the drier ESE fetch area featured
a thaw depth of 69 cm &+ 8 cm (N = 4) while the wetter NW
featured 79 cm £ 4 cm (N = 4); this is not a statistically sig-
nificant difference (p = 0.10).

The shown surface heterogeneity is likely to lead to spa-
tial variations in NEE in the EC footprint. To assess this ef-
fect and mesoscale disturbances, we investigated the spectral
composition of the EC signal by looking at the ogives of ver-
tical wind speed and CO; concentration. Particularly around
the time of snowmelt, we often found a mismatch between
lower and higher frequencies, indicating different local and
nonlocal flux contributions. Figure 2 shows an example from
this period comparing the ogives of conventional flux cal-
culations produced by EddyPro and ogive optimization flux
estimation based on the ogive density map. While all fre-
quencies fully contribute to the conventional flux estimation,
frequencies can obtain less weight with the ogive optimiza-
tion method if they cannot be described by the ogive spectral
distribution model. In the given example, this conceptual dif-
ference in the methods means that ogive optimization indi-
cated a CO; release, while EddyPro indicated uptake. Spec-
tral corrections had a comparably small effect. The ogive op-

www.biogeosciences.net/14/3157/2017/

timization model indicates that all relevant flux contributions
are carried by turbulence with a scale shorter than about 25 s
in this example (which does not, however, mean that 25 s is
sufficient to determine a 30 min flux). During this period in
May and June, the surface was a mix of patches of snow-
free soil, remaining snow, and meltwater ponds (when a net
CO; uptake can be considered unlikely; see Fig. 2b). The
low-frequency contributions also depend on larger-scale at-
mospheric movements, while the local turbulent flux is rep-
resented better in the mid- to high-frequency range. Such fre-
quency mismatches (high-frequency CO, release, but low-
frequency uptake) were frequently observed in our data and
their effect was relatively the largest for the small nongrow-
ing season fluxes (see Fig. S1 for additional ogive examples
and Fig. S3a for a flux comparison). The shifts between the
release and uptake of CO, typically occurred at frequencies
below 10! Hz, corresponding to recorded eddies with a di-
ameter of typically more than 30 m at the given wind speed.
During the growing season, fluxes from both methods typi-
cally agreed. Photos of the site in different seasons are given
in Fig. S6.

Since the frequency mismatches cannot be resolved in
conventional calculations, we focus on the NEE fluxes cal-
culated by the ogive optimization method for the ecosystem
characterization. Figure 3 shows the gap-filled NEE fluxes of
2015 as fingerprint plots and cumulative sums, which were
also calculated after separately gap filling the measurements
of the two distinct footprints (NW and ESE). These results

Biogeosciences, 14, 3157-3169, 2017
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Figure 2. Example of the CO, flux estimation during snowmelt. (a) Ogive on 31 May 2015 at 15:00 LT showing a mismatch between low
and high frequencies. While ogive optimization estimates a net CO; release, EddyPro (with and without spectral corrections after Moncrieff
et al., 1997, 2004) indicates an uptake. Average horizontal wind speed 5.2 m s~ ! from NW (313°), air temperature 4.5 °C, quality flag 0. The
arrows on the top indicate the corresponding timescales. (b) Photo of the environment around the flux tower on 27 May 2015 at 12:00 LT

during snowmelt.

indicate that the growing season in 2015 started on 14 June
and ended 28 August (defined as the first until the last day
of net CO, uptake). The results from EddyPro indicated the
same date for the end of the growing season, while its start
was already suggested 1 month before snowmelt. The finger-
print plot (Fig. 3a) shows that there can even be CO; uptake
at midnight during the polar day in the summer. While the
drier ESE yielded an annual carbon balance of —62 gCm~2,
the wetter NW yielded —91 gCm™2. The annual balance
of the combined footprint (using all fluxes without separat-
ing periods of different wind directions) was —82 gCm™2 in
2015. The corresponding value based on the EddyPro flux
calculations was —128 gC m~2, which we consider biased by
the abovementioned low-frequency contributions. The rela-
tively narrow probability distributions of the annual sums
(based on gap-filling uncertainties) demonstrate the signifi-
cance of the differences between the NW and ESE footprints
and between the ogive optimization and EddyPro methods.
Relatively large annual sinks are supported by our automatic
closed-chamber measurements in the NW footprint, which
show good agreement and correlation (0.75 < r < 0.88; p <
0.0001) with the EC fluxes (see Fig. S3b). In 2013, the Ed-
dyPro calculations yielded a smaller total annual CO; bal-
ance of —79 gCm~2 (see Fig. S2d), whereas ogive optimiza-
tion fluxes could not be calculated from 2013 raw CO, mea-
surements (see Sect. 2.3).

Many of the spatial differences in the annual CO; bud-
get stem from the growing season when NEE is strongly
affected by PAR. Figure 4 shows examples of the derived
light response curves and the evolution of the associated dark
respiration and light-use efficiency throughout the growing
season. Both dark respiration and light-use efficiency were
typically higher in the wetter footprint (NW) than in the
drier (ESE), which is consistent with the larger annual up-
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take in the NW than the ESE. At the beginning and end of
the growing season, the determination of the flux at light
saturation (Fgy) Was associated with relatively large uncer-
tainties because NEE and PAR varied relatively little. During
the peak growing season, Fcgy Was about 6.6 pmol m2g~!
for both footprints. The sum of Fcg and Rq can be used to
estimate the gross primary productivity at light saturation,
which was found to be —11.0 umolm~2s~! in the NW and
—8.3umolm~2s~! in the ESE. During snow-covered con-
ditions outside the growing season, our measurements indi-
cated an overall decreasing trend in the small CO; releases
throughout winter, which was modulated by increases dur-
ing strong winds (see Fig. S4). Soil temperature, on the other
hand, had no strong effect on the wintertime CO» release de-
spite a large variation of more than 25 K (see Fig. S4c).

Figure 5 shows a time series of ortho-rectified aerial pho-
tographs covering the same area as Fig. 1. Despite the differ-
ences in image quality, shadows, and overall soil moisture on
the days the images were taken, the time series still gives an
impression of the development of the polygon morphology.
All images show the same low-centered polygons with cen-
ters that are about equally inundated (except in 1990 when
the area was drier in general). There was no clear lateral ex-
pansion or degradation of the polygon troughs. Neither the
ponds nor the troughs became more interconnected or wet in
general, so there are no clear signs of differential ground sub-
sidence at this site. Other areas with ice-wedge polygons in
Adventdalen also indicated the same stable morphology dur-
ing the last 7 decades (see Fig. S7). Between 1990 and 2015,
some erosion on the edge of the river terrace occurred. The
exact speed of this edge erosion is hard to quantify due to
the shadows in this area, but it did not exceed 3 m over these
15 years.
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Figure 3. Gap-filled NEE fluxes for 2015. (a) Fingerprint plot of ogive optimization results. (b) Corresponding cumulative sums based on
all valid measurements (black) and separately gap filled for the two footprints (colored). The probability distributions shown on the right
indicate the estimated uncertainty in the annual sum due to data gaps and gap filling. The dashed line marks the time during snowmelt when

daily average albedo dropped below 0.3 (27 May 2015).
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Figure 4. Growing season NEE light response curves based on the ogive optimization method. (a) Examples from the time window around 18
August 2015 from the two distinct footprints. (b) Time series of dark respiration parameters. (¢) Corresponding graph for light-use efficiency.
The shaded bands indicate the statistical standard error in the parameters.

The photograph from 1990 was taken in the near-infrared
range and is shown in false colors. Vegetation, bare soil, and
open water reflect near-infrared light differently, so this im-
age clearly depicts these surfaces. The strong red tones in
the NW footprint correspond to the relatively high vegetation
density in this area, which is also seen in Fig. 1. The river in
the NE appears in a blue tone, while the darker spots in the
SW corner of the image correspond to an area with bare soil
brought to the surface by cryoturbation.
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4 Discussion

Our measurements demonstrate the high sensitivity of car-
bon cycling to small topographic differences in permafrost-
underlain Arctic tundra. Ice-rich permafrost is particularly
vulnerable to warming, with large increases in permafrost
degradation documented in the last 2 decades (Jorgenson
et al., 2006; Osterkamp et al., 2009; Grosse et al., 2011).
Liljedahl et al. (2016) observed pan-Arctic permafrost degra-
dation in polygonal tundra, which dramatically changed the
local drainage patterns and water balance on sub-decadal
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Figure S. Time series of images of the Adventdalen site showing little sign of differential ground subsidence, which would indicate ice-
wedge degradation. The image from 2015 is the same as shown in Fig. 1, while historical photographs were provided by the Norwegian Polar
Institute (reference numbers S48-5181, S61-3301, and S90-5273). The images from 1948 and 1961 were taken on panchromatic film, and
the image from 1990 is a near-infrared (false color) photograph. The red cross marks the EC tower.

timescales. Ice-wedge melting and the associated differen-
tial ground subsidence is expected to interconnect formerly
separated trough networks and thereby increase the drainage
of polygon centers (Necsoiu et al., 2013; Jorgenson et al.,
2015; Liljedahl et al., 2016). At a later stage this process
transforms low-centered polygons into high-centered poly-
gons and leads to the overall drying of the entire landscape.
In such cases, the space-for-time substitution of our two dis-
tinct footprint areas in Adventdalen would suggest a corre-
sponding lessening of CO; sinks in degrading polygonal tun-
dra.

Biogeosciences, 14, 3157-3169, 2017

However, our comparison of aerial photographs taken be-
tween 1948 and 2015 shows that there is no dramatic ice-
wedge degradation at our site on Svalbard. Nearby areas
with polygonal tundra in Adventdalen have also been stable
during the last 7 decades, despite the measured increase of
2.95°C in mean annual air temperatures between the peri-
ods 1961-1990 and 2000-2011 (Fgrland et al., 2012; Chris-
tiansen et al., 2013; Nordli et al., 2014). The maritime cli-
mate on Svalbard prevents episodes with extremely high
summer temperatures, which have been hypothesized to trig-
ger ice-wedge degradation (Jorgenson et al., 2006; Liljedahl
et al., 2016). It appears that gradual climate warming alone
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has so far not been sufficient to initiate strong ice-wedge
degradation in Adventdalen. Another reason for the apparent
stability of the ice wedges at our site could be the relatively
small surface slope of typically less than 1 %, which hin-
ders the development of an effective drainage system of de-
graded troughs. Generally speaking, ice-wedge stabilization
can also be caused by negative feedbacks, such as increased
plant growth in degraded troughs, which cools the soil above
the ice wedge (Jorgenson et al., 2015). Despite these mech-
anisms and observations, the strong temperature increase on
Svalbard may eventually lead to the gradual degradation of
ice wedges in Adventdalen, which we argue will lessen the
COs sink of this ecosystem.

The overall annual CO, balance of —82gCm™2 seems
surprisingly large given the high northern location of the
site with its typically shallow organic horizon in the soil (5—
10cm). The good agreement of EC and automatic closed-
chamber measurements, however, confirms the relatively
high uptake fluxes in the snow-free period (see Fig. S3b). The
comparison of the light response curve parameters to other
Arctic sites also indicates high but realistic growing season
productivity. Mbufong et al. (2014) derived these parame-
ters from 12 Arctic tundra sites during the peak growing sea-
son and report Ry between 0.6 and 3.9 umolm~2s~! and «
between 0.011 and 0.057 umol umol~!. Peak season param-
eters for the drier footprint (ESE; Rgq ~ 1.7 umol m~—2 s—L
o ~0.024 umol umol ') at the Adventdalen site lie well in
the center of this range, while the wetter footprint (NW;
Rq ~4.3umolm=2s~!, & ~0.049 pmol umol ") lies on the
upper end of this reported range. These values, in combina-
tion with the relatively large amount of incoming shortwave
radiation at 78° N during summertime, explain the large car-
bon sink in Adventdalen. The summertime CO; sink in Ad-
ventdalen is comparable to this season’s CO, balance in a
coastal wet sedge tundra ecosystem in Barrow, Alaska (—105
to —162 gC m~2) (Harazono et al., 2003). The wetter areas,
in particular, lose some carbon through methane emissions,
but automatic chamber measurements at Adventdalen indi-
cate that these losses are not expected to exceed 6 gC m™2
per year (Pirk et al., 2016a). We consider the export of dis-
solved organic carbon negligible because the small surface
slope and limited conductivity prevents a pronounced lateral
water runoff.

The grazing pressure from Svalbard reindeer could rep-
resent another type of carbon loss that has not been quan-
tified in the present study. Moreover, Wegener and Odasz-
Albrigtsen (1998) observed that plants in Adventdalen bal-
ance the consumption by reindeer with increased plant pro-
ductivity. While such interactions influence the carbon bud-
get of the ecosystem, they do not affect the discrepancy we
found between the two EC flux calculation methods.

The drivers of cold season emissions of COy from high
Arctic tundra are still understudied because technical chal-
lenges and low flux magnitudes often complicate continu-
ous in situ flux measurements. Our wintertime flux mea-

www.biogeosciences.net/14/3157/2017/

3165

surements from Adventdalen were found to decrease slightly
throughout winter. Episodic flux increases correlated with
wind speed, suggesting a convective mixing of the snow-
pack gas reservoir as observed in other studies from lower
latitudes (Takagi et al., 2005; Seok et al., 2009; Smagin and
Shnyrev, 2015). The missing relation between soil temper-
ature and measured wintertime CO» release could suggest
a decoupling of CO, production and release caused by the
physical blockage of gas diffusion in the soil (Elberling and
Brandt, 2003) or through potential ice layers in the snowpack
(Pirk et al., 2016a). While the majority of wintertime fluxes
were positive, some small uptake fluxes have also been ob-
served during the dark snow-covered period. Unlike reports
from other sites (Liiers et al., 2014), these fluxes have no
significant impact on the annual CO;, budget at our site. As
photosynthesis by plants or snow algae can be excluded dur-
ing the dark polar night, one might speculate that the appar-
ent uptakes are caused by abiotic mechanisms, such as the
convective mixing of CO;-depleted gas stored in the snow-
pack or thermophysical processes related to CO» solubility in
unfrozen pore water. Yet we found no relationship between
uptake situations and changes in snow, air and soil tempera-
tures, or ambient atmospheric CO; concentrations that could
support potential abiotic mechanisms of CO, uptake. The
magnitude of these fluxes was also so low compared to bi-
otic flux contributions that they cannot markedly change the
overall annual CO, balance of the ecosystem and are there-
fore regarded as noise in this study.

The conceptual definition of turbulent fluxes fundamen-
tally differs in the ogive optimization compared to conven-
tional methods as implemented with EddyPro. While the
ogive optimization method assumes a unidirectional flux,
which is sometimes better captured in the mid- and high-
frequency range, EddyPro includes all frequencies regardless
of their direction. The ogive optimization method appeared
better suited for the Adventdalen site than conventional pro-
cessing schemes. Specifically around the snowmelt period,
the ogive optimization estimates appear to capture the lo-
cal flux signal more realistically than conventional calcula-
tions, which indicated an onset of the growing season before
snowmelt. This contradiction was caused by many bidirec-
tional fluxes, i.e., situations with a consistent CO, release
reflected in high frequencies and CO; uptake reflected in
the low-frequency range of the spectrum (see Figs. 2 and
S1). The shift between these contributions occurred at fre-
quencies corresponding to eddies with a diameter of more
than 30m, i.e., exceeding the typical dimensions of surface
heterogeneity in the footprint area of our site. However, we
cannot fully exclude the possibility that the frequency mis-
matches are caused by flux heterogeneity within the local
footprint. It could be possible that the drier areas near the
EC tower (reflected better in the high frequencies) are net
CO3, sources, while wetter areas at greater distances from the
tower (reflected in the low frequencies) are net CO, sinks.
A heterogeneous vegetation composition might cause such
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flux heterogeneity during snowmelt because, unlike shrubs
and sedges, mosses have photosynthetically active tissue that
may overwinter so that they can start photosynthesizing at
low rates during snowmelt (Oechel, 1976; Tieszen et al.,
1980). While some degree of flux heterogeneity is certainly
present at any time of year, its effect might be too small to
explain the large frequency mismatches observed, particu-
larly during snowmelt. Nevertheless, our observations might
incentivize future studies to investigate the frequency depen-
dency of EC footprints. Snowmelt also entails a change in the
typical surface roughness length, which is slightly smaller
for snow than open tundra vegetation. However, such shifts
would be no problem for the functionality of the flux calcula-
tion schemes and cannot readily explain bidirectional fluxes,
even if the surface roughness is spatially heterogeneous. One
might speculate that the systematic occurrences of bidirec-
tional flux are due to an atmospheric layering in which low-
and high-frequency eddies circle through air masses with dif-
ferent atmospheric stability and CO, concentrations. While
the (smaller) high-frequency eddies only reflect one air mass,
the (larger) low-frequency eddies reflect two air masses with
different CO, concentrations. In the specific environment in
Adventdalen, such a layering might be induced by the in-
trusion of COj-depleted air at the surface originating from
the surrounding mountains by way of katabatic winds or sea
breeze circulations from the nearby fjord (Esau and Repina,
2012). However, similar low-frequency shifts were also ob-
served in temperate regions (Finnigan et al., 2003) and in
environments with neither pronounced surface heterogeneity
nor nearby water bodies, snow, or mountains (Sievers et al.,
2015b). Across the different sites we see a tendency for low-
frequency shifts to occur predominantly during conditions
with small flux magnitudes when the normally dominating
mid- and high-frequency contributions can be much smaller
than (nonlocal) low-frequency contributions. So perhaps the
hypothetical layering of the atmosphere is caused by the re-
peatedly changing CO, flux at the surface in response to di-
urnal factors, such as changes in incoming solar radiation,
which give rise to CO, concentration waves propagating ver-
tically into the atmosphere. While such hypotheses remain to
be investigated in future studies, we show that these (nonlo-
cal) low-frequency contributions lead to a difference in the
annual CO, budget of —46 gC m~2 over the course of 1 year
(see Fig. 3b). The ogive optimization method is more ap-
plicable to these highly heterogeneous Arctic environments
dominated by small fluxes because it can separate local and
nonlocal flux contributions.

5 Conclusions

The Adventdalen ice-wedge site was a surprisingly strong
CO, sink in 2015 (—82 gCm~2). Differences in vegetation
density and composition led to a significantly higher light-
use efficiency in areas with low-centered ice-wedge poly-
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gons compared to flat-centered polygons. While dark respi-
ration in the wetter area was also higher than in the drier area,
these releases did not compensate for the higher light-use ef-
ficiency in the annual CO; balance. In 2015, the drier area
sequestered 32 % less CO; than the wetter area (—62 com-
pared to —91 gCm™2). These results suggest a high sensitiv-
ity of CO, dynamics to small topographic differences in Arc-
tic tundra ecosystems. With climate warming, ice wedges are
predicted to melt and dry out the landscape. Despite strong
increases in mean annual air temperatures of more than 2 °C
on Svalbard in the last few decades, we see no evidence of
ice-wedge degradation compared to historical aerial images.
However, further warming may eventually initiate ice-wedge
degradation, and our spatial analysis implies a corresponding
reduction in the CO, sink upon drying. In Arctic polygonal
tundra where drying is already occurring, our results there-
fore suggest a similar weakening of the CO; sink function.

Data availability. Maps, measurement data, and processing
scripts are available from the authors upon request (nor-
bert.pirk @nateko.lu.se).
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