584 research outputs found
A new approach to modelling impacts on rubble pile asteroid simulants
Many asteroids with low bulk densities must have a rubble pile structure and internal voids. Although little is known about their internal structure, numerical simulations of impact events on these asteroids rely on assumptions on how the voids are distributed. We present a new approach to model impacts on rubble pile asteroids that explicitly takes into account their internal structure. The formation of the asteroid is modelled as a rubble pile aggregate of spherical pebbles of different sizes. This aggregate is then converted into a high-resolution smoothed particle hydrodynamics (SPH) model, accounting for macroporosity inside the pebbles. We compare impact-event outcomes for a large set of internal configurations to explore the parameter space of our model-building process. The analysis of the fragment size distribution and the disruption threshold quantifies the specific influence of each input parameter. The size distribution of the pebbles used in our model is a simple power law, containing three free parameters: the slope α, the lower cut-off radius rmin and the upper cut-off radius rmax. The influence of all three parameters on the outcome is assessed in this paper. The existence of void space in our model increases the resistance against collisional disruption, a behaviour previously reported based on numerical simulations using a continuum description of porous material (Holsapple 2009). We show, for a set of asteroid collisions typical for small asteroids in the main belt, that no a priori knowledge of the exact size distribution of the pebbles inside the asteroid is needed, as the choice of the corresponding parameters does not directly correlate with the impact outcome
Olivine or Impact Melt: Nature of the "Orange" Material on Vesta from Dawn
NASA's Dawn mission observed a great variety of colored terrains on asteroid
(4) Vesta during its survey with the Framing Camera (FC). Here we present a
detailed study of the orange material on Vesta, which was first observed in
color ratio images obtained by the FC and presents a red spectral slope. The
orange material deposits can be classified into three types, a) diffuse ejecta
deposited by recent medium-size impact craters (such as Oppia), b) lobate
patches with well-defined edges, and c) ejecta rays from fresh-looking impact
craters. The location of the orange diffuse ejecta from Oppia corresponds to
the olivine spot nicknamed "Leslie feature" first identified by Gaffey (1997)
from ground-based spectral observations. The distribution of the orange
material in the FC mosaic is concentrated on the equatorial region and almost
exclusively outside the Rheasilvia basin. Our in-depth analysis of the
composition of this material uses complementary observations from FC, the
visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector
(GRaND). Combining the interpretations from the topography, geomorphology,
color and spectral parameters, and elemental abundances, the most probable
analog for the orange material on Vesta is impact melt
The Cratering History of Asteroid (21) Lutetia
The European Space Agency's Rosetta spacecraft passed by the main belt
asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one
of the largest asteroids ever imaged by a spacecraft. During the flyby, the
on-board OSIRIS imaging system acquired spectacular images of Lutetia's
northern hemisphere revealing a complex surface scarred by numerous impact
craters, reaching the maximum dimension of about 55km. In this paper, we assess
the cratering history of the asteroid. For this purpose, we apply current
models describing the formation and evolution of main belt asteroids, that
provide the rate and velocity distributions of impactors. These models, coupled
with appropriate crater scaling laws, allow us to interpret the observed crater
size-frequency distribution (SFD) and constrain the cratering history. Thanks
to this approach, we derive the crater retention age of several regions on
Lutetia, namely the time lapsed since their formation or global surface reset.
We also investigate the influence of various factors -like Lutetia's bulk
structure and crater obliteration- on the observed crater SFDs and the
estimated surface ages. From our analysis, it emerges that Lutetia underwent a
complex collisional evolution, involving major local resurfacing events till
recent times. The difference in crater density between the youngest and oldest
recognized units implies a difference in age of more than a factor of 10. The
youngest unit (Beatica) has an estimated age of tens to hundreds of Myr, while
the oldest one (Achaia) formed during a period when the bombardment of
asteroids was more intense than the current one, presumably around 3.6Gyr ago
or older.Comment: Accepted by PSS, to appear on Lutetia Flyby special issu
Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implications for its collisional capture
TheMartian satellite Phobos has been observed on 2007 February 24 and 25, during the pre- and post-Mars closest approach (CA) of the ESA Rosetta spacecraftMars swing-by. The goal of the observations was the determination of the surface composition of different areas of Phobos, in order to obtain new clues regarding its nature and origin. Near-ultraviolet, visible and near-infrared (263.5-992.0 nm) images of Phobos's surface were acquired using the Narrow Angle Camera of the OSIRIS instrument onboard Rosetta. The six multi-wavelength sets of observations allowed a spectrophotometric characterization of different areas of the satellite, belonging respectively to the leading and trailing hemisphere of the anti-Mars hemisphere, and also of a section of its sub-Mars hemisphere. The pre-CA spectrophotometric data obtained with a phase angle of 19° have a spectral trend consistent within the error bars with those of unresolved/disc-integrated measurements present in the literature. In addition, we detect an absorption band centred at 950 nm, which is consistent with the presence of pyroxene. The post-CA observations cover from NUV to NIR a portion of the surface (0° to 43°E of longitude) never studied before. The reflectance measured on our data does not fit with the previous spectrophotometry above 650 nm. This difference can be due to two reasons. First, the OSIRIS observed area in this observation phase is completely different with respect to the other local specific spectra and hence the spectrum may be different. Secondly, due to the totally different observation geometry (the phase angle ranges from 137° to 140°), the differences of spectral slope can be due to phase reddening. The comparison of our reflectance spectra, both pre-and post-CA, with those of D-type asteroids shows that the spectra of Phobos are all redder than the mean D-type spectrum, but within the spectral dispersion of other D-types. To complement this result, we performed an investigation of the conditions needed to collisionally capture Phobos in a way similar to that proposed for the irregular satellites of the giant planets. Once put in the context of the current understanding of the evolution of the early Solar system, the coupled observational and dynamical results we obtained strongly argue for an early capture of Phobos, likely immediately after the formation of Mars. © 2012 The Authors
Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft
Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims. A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods. The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results. We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions. The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics
Magnetic Phase Diagram of GdNi2B2C: Two-ion Magnetoelasticity and Anisotropic Exchange Couplings
Extensive magnetization and magnetostriction measurements were carried out on
a single crystal of GdNi2B2C along the main tetragonal axes. Within the
paramagnetic phase, the magnetic and strain susceptibilities revealed a weak
anisotropy in the exchange couplings and two-ion tetragonal-preserving
alpha-strain modes. Within the ordered phase, magnetization and
magnetostriction revealed a relatively strong orthorhombic distortion mode and
rich field-temperature phase diagrams. For H//(100) phase diagram, three
field-induced transformations were observed, namely, at: Hd(T), related to the
domain alignment; Hr(T), associated with reorientation of the moment towards
the c-axis; and Hs(T), defining the saturation process wherein the exchange
field is completely counterbalanced. On the other hand, For H//(001) phase
diagram, only two field-induced transformations were observed, namely at: Hr(T)
and Hs(T). For both phase diagrams, Hs(T) follows the relation
Hs[1-(T/Tn)^2]^(1/2)kOe with Hs(T-->0)=128.5(5) kOe and Tn(H=0)=19.5 K. In
contrast, the thermal evolution of Hr(T) along the c-axis (much simpler than
along the a-axis) follows the relation Hr[1-T/Tr]^(1/3) kOe where
Hr(T-->0)=33.5(5) kOe and Tr(H=0)=13.5 K. It is emphasized that the
magnetoelastic interaction and the anisotropic exchange coupling are important
perturbations and therefore should be explicitly considered if a complete
analysis of the magnetic properties of the borocarbides is desired
Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia
We present a comparison of our results from ground-based observations of
asteroid (21) Lutetia with imaging data acquired during the flyby of the
asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity
to evaluate and calibrate our method of determination of size, 3-D shape, and
spin of an asteroid from ground-based observations. We present our 3-D
shape-modeling technique KOALA which is based on multi-dataset inversion. We
compare the results we obtained with KOALA, prior to the flyby, on asteroid
(21) Lutetia with the high-spatial resolution images of the asteroid taken with
the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter
with Lutetia. The spin axis determined with KOALA was found to be accurate to
within two degrees, while the KOALA diameter determinations were within 2% of
the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed
by the spectacular visual agreement between both 3-D shape models (KOALA pre-
and OSIRIS post-flyby). We found a typical deviation of only 2 km at local
scales between the profiles from KOALA predictions and OSIRIS images, resulting
in a volume uncertainty provided by KOALA better than 10%. Radiometric
techniques for the interpretation of thermal infrared data also benefit greatly
from the KOALA shape model: the absolute size and geometric albedo can be
derived with high accuracy, and thermal properties, for example the thermal
inertia, can be determined unambiguously. We consider this to be a validation
of the KOALA method. Because space exploration will remain limited to only a
few objects, KOALA stands as a powerful technique to study a much larger set of
small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S
Delivery of Dark Material to Vesta via Carbonaceous Chondritic Impacts
NASA's Dawn spacecraft observations of asteroid (4) Vesta reveal a surface
with the highest albedo and color variation of any asteroid we have observed so
far. Terrains rich in low albedo dark material (DM) have been identified using
Dawn Framing Camera (FC) 0.75 {\mu}m filter images in several geologic
settings: associated with impact craters (in the ejecta blanket material and/or
on the crater walls and rims); as flow-like deposits or rays commonly
associated with topographic highs; and as dark spots (likely secondary impacts)
nearby impact craters. This DM could be a relic of ancient volcanic activity or
exogenic in origin. We report that the majority of the spectra of DM are
similar to carbonaceous chondrite meteorites mixed with materials indigenous to
Vesta. Using high-resolution seven color images we compared DM color properties
(albedo, band depth) with laboratory measurements of possible analog materials.
Band depth and albedo of DM are identical to those of carbonaceous chondrite
xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison
CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band
depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance
in DM (1-6 vol%) is consistent with howardite meteorites. We find no evidence
for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of
DM. Our modeling efforts using impact crater scaling laws and numerical models
of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta
during the formation of the ~400 km Veneneia basin by a low-velocity (<2
km/sec) carbonaceous impactor. This discovery is important because it
strengthens the long-held idea that primitive bodies are the source of carbon
and probably volatiles in the early Solar System.Comment: Icarus (Accepted) Pages: 58 Figures: 15 Tables:
- …