263 research outputs found

    Monte Carlo domain decomposition for robust nuclear reactor analysis

    Get PDF
    Monte Carlo (MC) neutral particle transport codes are considered the gold-standard for nuclear simulations, but they cannot be robustly applied to high-fidelity nuclear reactor analysis without accommodating several terabytes of materials and tally data. While this is not a large amount of aggregate data for a typical high performance computer, MC methods are only embarrassingly parallel when the key data structures are replicated for each processing element, an approach which is likely infeasible on future machines. The present work explores the use of spatial domain decomposition to make full-scale nuclear reactor simulations tractable with Monte Carlo methods, presenting a simple implementation in a production-scale code. Good performance is achieved for mesh-tallies of up to 2.39 TB distributed across 512 compute nodes while running a full-core reactor benchmark on the Mira Blue Gene/Q supercomputer at the Argonne National Laboratory. In addition, the effects of load imbalances are explored with an updated performance model that is empirically validated against observed timing results. Several load balancing techniques are also implemented to demonstrate that imbalances can be largely mitigated, including a new and efficient way to distribute extra compute resources across finer domain meshes.United States. Dept. of Energy. Center for Exascale Simulation of Advanced Reactor

    Progress and Status of the Openmc Monte Carlo Code

    Get PDF
    The present work describes the latest advances and progress in the development of the OpenMC Monte Carlo code, an open-source code originating from the Massachusetts Institute of Technology. First, an overview of the development workflow of OpenMC is given. Various enhancements to the code such as real-time XML input validation, state points, plotting, OpenMP threading, and coarse mesh finite difference acceleration are described.United States. Department of Energy. Naval Reactors Division (Rickover Fellowship Program in Nuclear Engineering)United States. Department of Energy (Consortium for Advanced Simulation of Light Water Reactors. Contract DE-AC05-00OR22725)United States. Department of Energy. Office of Advanced Scientific Computing Research (Contract DE-AC02-06CH11357

    RORα-expressing T regulatory cells restrain allergic skin inflammation

    Get PDF
    Atopic dermatitis is an allergic inflammatory skin disease characterized by the production of the type 2 cytokines in the skin by type 2 innate lymphoid cells (ILC2s) and T helper 2 (TH2) cells, and tissue eosinophilia. Using two distinct mouse models of atopic dermatitis, we show that expression of retinoid-related orphan receptor α (RORα) in skin-resident T regulatory cells (Tregs) is important for restraining allergic skin inflammation. In both models, targeted deletion of RORα in mouse Tregs led to exaggerated eosinophilia driven by interleukin-5 (IL-5) production by ILC2s and TH2 cells. Expression of RORα in skin-resident Tregs suppressed IL-4 expression and enhanced expression of death receptor 3 (DR3), which is the receptor for tumor necrosis factor (TNF) family cytokine, TNF ligand–related molecule 1 (TL1A), which promotes Treg functions. DR3 is expressed on both ILC2s and skin-resident Tregs. Upon deletion of RORα in skin-resident Tregs, we found that Tregs were no longer able to sequester TL1A, resulting in enhanced ILC2 activation. We also documented higher expression of RORα in skin-resident Tregs than in peripheral blood circulating Tregs in humans, suggesting that RORα and the TL1A-DR3 circuit could be therapeutically targeted in atopic dermatitis

    Low-Temperature Physics

    Get PDF
    Contains reports on five research projects

    Space Telescope and Optical Reverberation Mapping Project. VI. : reverberating disk models for NGC 5548

    Get PDF
    D.A.S. and K.D.H. acknowledge support from the UK Science and Technology Facilities Council through grant ST/K502339/1 and ST/J001651/1.We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Å to 9157 Å) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36° ± 10°, temperature T1 =(44 ± 6) x 103 K at 1 light day from the black hole, and a temperature–radius slope (T α r-α) of α = 0.99 ± 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/LEdd=0.1.PostprintPeer reviewe

    Reasons for Transfer and Subsequent Outcomes Among Patients Undergoing Elective Spine Surgery at an Orthopedic Specialty Hospital

    Get PDF
    Objective: To evaluate the reasons for transfer as well as the 90-day outcomes of patients who were transferred from a high-volume orthopedic specialty hospital (OSH) following elective spine surgery. Materials and Methods: All patients admitted to a single OSH for elective spine surgery from 2014 to 2021 were retrospectively identified. Ninety-day complications, readmissions, revisions, and mortality events were collected and a 3:1 propensity match was conducted. Results: Thirty-five (1.5%) of 2351 spine patients were transferred, most commonly for arrhythmia (n = 7; 20%). Thirty-three transferred patients were matched to 99 who were not transferred, and groups had similar rates of complications (18.2% vs. 10.1%; P = 0.228), readmissions (3.0% vs. 4.0%; P = 1.000), and mortality (6.1% vs. 0%; P = 0.061). Conclusion: Overall, this study demonstrates a low transfer rate following spine surgery. Risk factors should continue to be optimized in order to decrease patient risks in the postoperative period at an OSH

    Mycoplasma Contamination Revisited: Mesenchymal Stromal Cells Harboring Mycoplasma hyorhinis Potently Inhibit Lymphocyte Proliferation In Vitro

    Get PDF
    Mesenchymal stromal cells (MSC) have important immunomodulatory effects that can be exploited in the clinical setting, e.g. in patients suffering from graft-versus-host disease after allogeneic stem cell transplantation. In an experimental animal model, cultures of rat T lymphocytes were stimulated in vitro either with the mitogen Concanavalin A or with irradiated allogeneic cells in mixed lymphocyte reactions, the latter to simulate allo-immunogenic activation of transplanted T cells in vivo. This study investigated the inhibitory effects of rat bone marrow-derived MSC subsequently found to be infected with a common mycoplasma species (Mycoplasma hyorhinis) on T cell activation in vitro and experimental graft-versus-host disease in vivo.We found that M. hyorhinis infection increased the anti-proliferative effect of MSC dramatically, as measured by both radiometric and fluorimetric methods. Inhibition could not be explained solely by the well-known ability of mycoplasmas to degrade tritiated thymidine, but likely was the result of rapid dissemination of M. hyorhinis in the lymphocyte culture.This study demonstrates the potent inhibitory effect exerted by M. hyorhinis in standard lymphocyte proliferation assays in vitro. MSC are efficient vectors of mycoplasma infection, emphasizing the importance of monitoring cell cultures for contamination

    Space telescope and optical reverberation mapping project. IV. Anomalous behavior of the broad ultraviolet emission lines in NGC 5548

    Get PDF
    During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for ∼60-70 days, starting ∼75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterized by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission line flux deficits occurred for the high ionization, collisionally excited lines C iv and Si iv(+O iv]), and also He ii(+O iii]), while the anomaly in Lywas substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with Eph > 54 eV relative to those near 13.6 eV. We suggest two plausible mechanisms for the observed behavior: (i) temporary obscuration of the ionizing continuum incident upon broad line region (BLR) clouds by a moving veil of material lying between the inner accretion disk and inner (BLR), perhaps resulting from an episodic ejection of material from the disk, or (ii) a temporary change in the intrinsic ionizing continuum spectral energy distribution resulting in a deficit of ionizing photons with energies >54 eV, possibly due to a transient restructuring of the Comptonizing atmosphere above the disk. Current evidence appears to favor the latter explanation.Publisher PDFPeer reviewe
    • …
    corecore