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Abstract

Monte Carlo (MC) neutral particle transport codes are considered the gold-standard for nuclear simulations, but they cannot
be robustly applied to high-fidelity nuclear reactor analysis without accommodating several terabytes of materials and tally
data. While this is not a large amount of aggregate data for a typical high performance computer, MC methods are only
embarrassingly parallel when the key data structures are replicated for each processing element, an approach which is likely
infeasible on future machines. The present work explores the use of spatial domain decomposition to make full-scale nuclear
reactor simulations tractable with Monte Carlo methods, presenting a simple implementation in a production-scale code. Good
performance is achieved for mesh-tallies of up to 2.39TB distributed across 512 compute nodes while running a full-core
reactor benchmark on the Mira Blue Gene/Q supercomputer at the Argonne National Laboratory. In addition, the effects of
load imbalances are explored with an updated performance model that is empirically validated against observed timing results.
Several load balancing techniques are also implemented to demonstrate that imbalances can be largely mitigated, including a
new and efficient way to distribute extra compute resources across coarse domain meshes.

Keywords: Monte Carlo, domain decomposition, load balancing, neutron transport, nuclear reactor analysis

1. Introduction

Next-generation high-performance-computing (HPC) ar-
chitectures will increasingly utilize on-node parallelism to
achieve improvements in peak FLOP rates at improved power
efficiency ([1, 2, 3]). For many applications the increased
processor performance will have a signficant impact on the
fidelity of the physical models, potentially enabling the simu-
lation of a much broader range of physical phenomenon for
signicantly longer timescales or at much higher resolution.
However, at the same time the total memory is growing at
a slower rate than the aggregate available processing power,
so that the amount of memory available to each individual
processing unit is descreasing ([4, 5]). This new FLOP/mem-
ory balance will leave us in a regime quite distinct from what
has become familiar over the past twenty years, requiring in
many cases non-trivial adaptations of traditional methods in
order to take advantage of the increased parallelism.

One prime example can be found in the field of nuclear
reactor physics, where stochastic Monte Carlo (MC) particle
transport methods have the potential to be a highly accurate,
general-purpose tool for robust for full core reactor simula-
tions ([6]). MC methods can sample directly from evaluated
nuclear data to carry out random walks for individual particles
through an arbitrarily complex geometry with minimal approx-
imations. They can be used to determine power distributions,
dose rates, and other quantities critical to assessing the safety
and performance of nuclear systems. However, for certain
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classes of problems MC methods require immense computa-
tional effort to achieve good statistical convergence, making
their routine use impractical ([7]). Thus, they have tradi-
tionally been relegated to a more limited set of applications,
such as benchmarking and validation of lower-fidelity meth-
ods, or for the analysis of smaller systems with less complex
physics. It is desirable to shift this paradigm, especially with
the complexity of next-generation reactor designs present-
ing new challenges to the existing suite of highly-specialized
reactor simulation tools.

While the performance improvements of next-generation
systems might overcome the time-to-solution limitations of
MC methods, a number of algorithmic challenges stand in the
way of harnessing the increased processing power - especially
in the presence of reduced-memory enviroments. The root of
the problem is that effective parallelization of MC methods has
traditionally been carried out by performing parallellization
over particles, where each processing element tracks a subset
of particle histories through (potentially) the entire domain.
This approach requires the replication of domain meta-data
on each distributed processing element. While this may be
a relatively small memory footprint for simple problems, for
a robust analysis of power reactors the required data struc-
tures are much too large for local memory. We note that this
problem is present even on existing leadership class machines,
and that a number of simplifications and approximations are
made in an attempt to retain the traditional approach and
minimize the negative performance impact. On future HPC
systems the problem is expected to be exacerbated.

The details of the full-scale reactor problem are discussed
in [8]. The basic idea is that a very fine spatial mesh is needed
for a robust full-core reactor depletion analysis: several Ter-
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abytes of memory are required to hold reaction rate tallies
and isotopic abundances for several hundreds of nuclides in
each region. For this problem, the authors of [7, 8] detail
the several well-known performance hurdles that must be
overcome before MC codes can be used routinely: (i) exces-
sive overall time to solution for adequate statistical conver-
gence; (ii) inadequate memory for reaction rate tallies and
material composition data, and (iii) inadequate memory for
temperature-dependent nuclear cross section data. Several re-
cent works aim to address issues (i) and (iii) ([9, 10, 11, 12]),
but issue (ii) requires additional attention.

Implementing domain decomposition seems like an ob-
vious solution, but the routine use of this approach is made
difficult by the large amount of particle communication that
would be required between domains (billions of particles for
real problems), and the accompanying potential for significant
parallel inefficiencies due to load imbalances ([6]). Instead,
traditional parallel MC codes employ full domain replication
to take advantage of the embarrassingly-parallel nature of
neutral particle tracking. With this scheme, all material and
tally data is allocated on each distributed computational node
([13, 14]) and synchronized between fission source iterations:
a relatively inexpensive operation ([15]). Given on-node
memory constraints, it is clear that this parallelization scheme
is not capable of tackling reactor problems on its own.

One approach for handling this memory limitation without
domain decomposition is data decomposition. For example,
the method described in [16] stores tally data on a set of
distributed “server” processes, to which tracking processes
send tally writes via asynchronous MPI sends. Indeed, rea-
sonable performance was observed in [17] for a variety of
typical computer parameters with tallies at a scale relevant
to full-core analyses. In principle a similar concept can be
applied to the treatment of materials data, but it is not clear
what effect this will have on particle tracking rates.

On the other hand, domain decomposition immediately
solves the data problems for both materials and tallies. Specif-
ically, when memory pertaining to certain regions is allocated
only on nodes that track those regions, the footprint on each
is reduced inversely to the number of spatial domains used.
This is not a new concept for MC codes ([18, 19, 20, 21, 22]),
but to our knowledge it has not been applied to full-core 3D
reactor analyses. For this class of problem it still needs to be
demonstrated that the concept is feasible for realistic calcula-
tions that incur the true memory and particle communication
burden.

The ability to model and predict the extent of particle com-
munication costs and load imbalances has been investigated in
[23, 24] for a range of machine and problem parameters with
a simplified MC code. In these analyses it is demonstrated
that these costs can be computed from the peaking factor
and spatial statistics of the problem (i.e., per-domain leakage
fractions), and that only modest penalties are predicted for a
typical reactor geometry.

These results motivated the present work, where we im-
plement domain decomposition in a full-physics MC code
(OpenMC, [14]) and explore the full-size reactor problem for

both tally and particle communication performance charac-
teristics.

2. Domain Decomposition Implementation

2.1. Model

The present work implements domain decomposition by
adding particle synchronization stages during each generation
of particles, as described in [23]. This is much simpler than
the algorithms presented in [19], [20], [21], and [22] but
it allows for the derivation of an explicit timing model that
can be used to predict how well it will perform for the full-
fidelity reactor problem. The changes to the outer loop of the
OpenMC eigenvalue iteration routine are shown in lines 4, 5,
9-11, and 15-17 of Algorithm 1.

Algorithm 1 OpenMC eigenvalue iteration outer loop with
domain decomposition modifications, from the perspective
of one spatial domain. Only particles in the present domain
are run (the local source) at each stage. While transporting
particles, if the distance to a collision dcol l ision is larger than
the distance to a domain boundary dboundar y , the particle is
buffered for communication.

1: Guess initial fission distribution
2: for each generation of particles do
3: Sample particles from fission distribution
4: Compile local source
5: repeat
6: for each particle in the local source do
7: while Neutron not yet absorbed do
8: Sample dcol l ision, find dboundar y
9: if dcol l ision > dboundar y then

10: Buffer particle for send, Break
11: end if
12: Sample physics, calc. tallies
13: end while
14: end for
15: Communicate particle buffer
16: Rebuild local source from incoming particles
17: until All particles in generation are absorbed
18: Synchronize tallies
19: Calculate eigenvalue
20: Rebuild fission source distribution
21: end for

This method blocks all processes at each synchronization
stage (line 15 in Algorithm 1), which clearly presents a po-
tential inefficiency for load-imbalanced problems. This effect
can be predicted with the performance model, and we will
show in later sections that it can be largely mitigated with
load-balancing techniques.

As described in [24], the time τ needed to complete a
perfectly load-balanced domain-decomposed Monte Carlo run
using this simple scheme can be modeled as a combination of
latency, bandwidth, and particle tracking components:
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τ= τlatenc y +τbandwid th +τt racking (1)

It is straightforward to write this in terms of the number
of synchronization stages M , the average number of particles
P̄i run in each domain at stage i, and the average fraction λ̄i
of particles that leak out of each domain at stage i:

τ= 6αM + β
M−1
∑

i=0

λ̄i P̄i +µ
M−1
∑

i=0

P̄i (2)

where α, β , and µ are the latency, inverse bandwidth, and
inverse particle tracking rate coefficients of the system, with
units of seconds per connection, seconds per particle trans-
fered, and seconds per particle simulated, respectively. This
applies to a rectilinear decomposition where each domain has
six Cartesian neighbors.

For real problems with load imbalances we can write the
number of particles run in each domain at each stage as a
deviation from the perfectly load-balanced average. Since this
approach requires all processes to wait at the synchronization
points between stages, τ′ for the load-imbalanced problem
can be written as:

τ′ = 6αM + β
M−1
∑

i=0

λmax
i

�

P̄i +δpmax
i

�

+µ
M−1
∑

i=0

�

P̄i +δpmax
i

�

τ′ ≈ τ+ β
M−1
∑

i=0

λmax
i δpmax

i +µ
M−1
∑

i=0

δpmax
i

(3)
where δpmax

i and λmax
i denote the leakage and load deviation

for the domains at stage i that take the longest to finish track-
ing and transmitting particles, respectively (these could be
from the same domain, but not necessarily). The relation to
τ is approximate because λmax

i P̄i 6= λ̄i P̄i∀i in the bandwidth
term. However, for nearly all practical cases the particle track-
ing term will be much larger than the bandwidth term, so this
approximation should produce negligible error.

We can then quantify the magnitude of the load imbal-
ance penalty ∆ caused by the blocking synchronization points
between stages as

∆≡
τ′ −τ
τ

. (4)

In [24] the authors took this a step further, expanding the
sums in Equations 2 and 3 to write them in terms of the load
imbalance distribution at the initial particle tracking stage.
For example,

τt racking = µ
M−1
∑

i=0

P̄i

= µ
�

P̄0 + P̄1 + ...+ P̄M−1

�

= µ
�

P̄0 + λ̄0 P̄0 + λ̄0λ̄1 P̄0 + ...+ λ̄0λ̄1...λ̄M−2 P̄0

�

= µP̄0

�

1+λ0 + λ̄0λ̄1 + ...+ λ̄0λ̄1...λ̄M−2

�

= µP̄0

�

1+
M−1
∑

i=0

i
∏

k=0

λ̄k

�

.

(5)
We can expand the bandwidth term in a similar fashion and
write Equation 2 as

τ= 6αM + β P̄0‖λ̄‖+µP̄0

�

1+ ‖λ̄‖
�

(6)

with

‖λ̄‖ ≡
M−1
∑

i=0

i
∏

k=0

λ̄k. (7)

The authors next considered that in the worst case

δpmax
i+1 ≤ λ

max
i δpmax

i , (8)

which with similar expansions allows Equation 3 to be written
as

τ′ ® τ+ βδpmax
0 ‖λmax‖+µδpmax

0 (1+ ‖λmax‖) (9)

with

‖λmax‖ ≡
M−1
∑

i=0

i
∏

k=0

λmax
k . (10)

Finally, by substituting Equations 6 and 9 into Equation 4
and then rearranging we arrive at an upper bound for the
load imbalance penalty as

∆≤
δpmax

0

ε+ 1
C P̄0

(11)

for

C ≡
µ (1+ ‖λmax‖) + β‖λmax‖
µ
�

1+ ‖λ̄‖
�

+ β‖λ̄‖
. (12)

Neglecting ε (a multiplicative combination of α, β , and
M), we obtain the form presented in [24]:

∆≤ C
δpmax

0

P̄0
=

C
Γ0
− C . (13)

with load balance Γi ≡ P̄i/P
max
i .

Note that the treatment presented here represents a slightly
different re-derivation of the previously-reported performance
model with fewer approximations, and that the ||λ|| terms
presented here are not directly comparable to their previous
definitions.
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In this work we use data from real DD runs in Equations 2
and 3 to calculate the load imbalance penalty directly, as well
as compute the upper-bound from Equation 13. Both of these
are then compared to the observed load imbalance penalties.

2.2. Implementation
Support for domain decomposition was implemented in

OpenMC for rectilinear meshes that can be laid over arbitrarily
complex geometries. The initial focus was on the inter-domain
particle communication routines to validate the performance
model and demonstrate the feasibility of DD for full reac-
tor problems. Future work will handle the domain-aware
loading of tallies and materials in memory, which was not
implemented here in a general way. However, domain-aware
memory loading of rectilinear mesh-tallies was implemented,
with the requirement that each mesh bin be fully encompassed
inside a single domain. This means that memory will only
be allocated for each tally mesh bin on compute nodes that
track particles in the same region of space, and that no tally
synchronization is required between domains.

The particle communication logic (line 15 of Algorithm
1) is shown in detail in Algorithm 2. It was designed for
cases when the number of domains is less than or equal to the
number of compute processes available. In other words: more
than one compute process can be assigned to work on the
same domain if extra resources are available, with the particle
tracking load in that domain divided evenly among them
(i.e., traditional Monte Carlo parallelism). This is handled
efficiently by conceptualizing the total number of particles
entering a domain from any neighbor as belonging to an
ordered array. Then, analogous to the fission bank treatment
described in [15], the boundaries of slices “owned” by each
process can be computed and used to buffer and send particles
to the correct location. Figure 1 attempts to clarify this concept
with an example.

It should be noted that each domain must receive informa-
tion from all second-degree neighbors regarding the number
of particles being sent to its direct neighbors (line 2 of Algo-
rithm 2). For example, domains d0 and d1 in Figure 1 are not
direct neighbors that communicate particles at each stage, but
processes on each do need to know how many particles are
being sent to their shared direct neighbor domain d3. Thus, at
most each domain must communicate with a maximum of 24
domains at each stage (the 3D von Neumann neighborhood of
range r = 2). This means that the computational complexity
of this algorithm is not a direct function of the number of
domains. However, it does scale linearly with the number
of processes on neighboring domains, which relates to the
number of domains depending on the load-balancing strategy
employed.

2.3. Random Number Reproducibility
Random number reproducibility was retained in this im-

plementation by adding the LCG random number seed to the
particle data structure and communicating it with particles
as they cross domain boundaries. New fission particles re-
ceived initial seeds that were randomly sampled using the

Algorithm 2 Particle communication routine
1: Count no. of particles to send to each neighbor domain i:

MPI_ALLREDUCE among processes in just this domain
2: Synchronize domain send info in local neighborhood (i.e. all

n_senddomain( j)→domain(i))

Determine sending process starts

3: for i = 1→ 6 do
4: star ts(i) = 0
5: for j = 1→ 6 do
6: star ts(i) = star t(i) + n_senddomain( j)→domain(i)

7: if domain( j) == my_domain then
8: Break . star ts(i) is now the domain start
9: end if

10: end for
11: Find proc_o f f set with MPI_EXSCAN within domain
12: star ts(i) = star ts(i) + proc_o f f set
13: . star ts(i) is now the current process start
14: end for

Determine receiving process (pid) finishes

15: for i = 1→ 6 do
16: mod = modulo(n_sendall→domain(i), n_procs(i))
17: for pid = 1→ n_procs(i) do
18: f inishes(i, pid) = i × n_sendall→domain(i)

n_procs(i)
19: if i − 1< mod then
20: f inishes(i, pid) = f inishes(i, pid) + i
21: else
22: f inishes(i, pid) = f inishes(i, pid) +mod
23: end if
24: end for
25: end for

Determine send info to each process (pid)

26: for i = 1→ 6 do
27: pid = search(star ts(i), f inishes(i, :))
28: for s = 1→ nbu f f ered_par t icles→i do
29: Buffer site s for sending to process pid
30: star ts(i) = star ts(i) + 1
31: if star ts(i)> f inishes(i, pid) then
32: pid = pid + 1
33: end if
34: end for
35: end for

36: Send/Recv particles

Symbol Table
i, j Local indices of first- and second-degree neigh-

bor domains, respectively
domain(i) Global domain index of local neighbor i
my_domain Global domain index of the current process
n_senddomain( j)→domain(i) No. of particles being sent to direct neighbor

i from second-degree neighbor j
star ts(i) Starting index of the current process’s slice in

the total particle array going to domain i
f inishes(i, pid) Ending index of process pid ’s slice in the total

particle array going to domain i
proc_o f f set Starting index of the current process’s slice in

the particle array from my_domain only
nprocs(i) No. of processes working on domain i
nbu f f ered_par t icles→i No. particles to send to domain i
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Fig. 1. Left: Scheme of four square domains, where processes on domains d1, d2, and d3 have a total of nine particles to send to processes on domain d4.
Right: Particle communication scheme from the perspective of process p1 on domain d2, when deciding how to send particles 5 and 6 to domain d4. The total
number of particles being sent to domain d4 are conceptualized as existing in a fictitious ordered array, where slices are ‘owned’ by different processes. The
left is the particle array from the perspective of sending processes; the right is same array from the perspective of receiving processes. By comparing the
starting and ending indices of the slices between the sending and receiving processes (the star ts and f inishes arrays in Algorithm 2), each process can decide
where to send particles in a distributed fashion. In this example, this process sends one particle to process p2 and one particle to process p3.

random number stream of the parent, and source sampling
between successive fission generations was done using these
new streams. This ensures that eigenvalue and tally results
will be identical regardless of the number of domains and
compute processes used: a highly desirable quality of the
code for debugging and validation purposes.

The starting source - typically sampled from some analyti-
cal spatial distribution - also needs to be consistently chosen
to retain random number reproducibility. This is not entirely
straightforward, since it is not known a priori for a given do-
main mesh how many particles will start in each region. In the
current implementation this is handled by having processes
on all domains sample all particles of the starting source in the
same order with the same random number stream, keeping
only those that fall in their domain (i.e., rejection sampling).
However, this will be extremely inefficient for runs with fine
domain meshes and a large number of particles per genera-
tion. Future work will switch to a scheme where all processes
sample a subset of the source using the appropriate section
of the random number stream (like for the traditional paral-
lel implementation), and then communicate particles to the
appropriate domain depending on the sampled location of
each.

2.4. Test Problems
The performance of this domain decomposition implemen-

tation was explored in two ways: 1) by scaling the number of
domains to evaluate communications performance and com-
pare load imbalance penalties to the analytical model and 2)
by scaling the size of a mesh-tally on a fixed domain mesh to
demonstrate the feasibility of accomplishing Terabyte-scale
tallies.

Runs were carried out for two problems: 1) an infinite
medium fuel and water mixture that serves as a perfectly

load-balanced baseline, and 2) the BEAVRS Pressurized Water
Reactor (PWR) benchmark, a realistic 3D full core nuclear
reactor with a physically relevant spatial distribution.

The BEAVRS benchmark geometry is shown in Figure 2 -
the specification describes a PWR with 193 standard 17x17-
pin Optimized Fuel Assemblies ([25]). For both BEAVRS and
the infinite medium problem, domain meshes consisting of
evenly-spaced cubes were overlaid on top of the geometry
for a variety of domain sizes - i.e., 2x2x2 = 8 domains total,
3x3x3 = 27 domains total, etc., up to the 8x8x8=512 domain
case, which is shown in Figure 2.

Mesh-tallies were carried out for BEAVRS with the 8x8x8
DD mesh for a variety of meshbin sizes, shown in Table 1 and
depicted in Figure 3. These were chosen to be structured
Cartesian meshes across the entire geometry, sized so that
each cubic mesh cell fits exactly into only one domain. These
were each run separately for both tracklength flux and analog
fission tallies. The reported tally size is calculated from the
number of mesh bins and the fact that OpenMC requires 24
bytes per meshbin: three eight-byte double-precision numbers
corresponding to the temporary batch accumulator, the total
accumulator for the mean, and the total accumulator for the
variance.

It should be noted that full-core depletion problems will
not require these types of meshes - cell tallies as described in
[8] are more appropriate. In the current work we use these
meshes as a proxy for the real isotopic reaction rate tallies to
demonstrate the efficiency of the OpenMC tally system at this
scale while using domain decomposition.

All runs were carried out on the Mira IBM Blue Gene/Q
supercomputer at the Argonne National Laboratory which
has 16GB of memory on each compute node. As indicated
in Table 1, the finest tally mesh used 30% of the memory on
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1 1

Fig. 2. Geometry of the BEAVRS PWR benchmark showing the 8x8x8 DD mesh used for tally results. Left: Radial top-down view. Right: Axial view.

each node when decomposed.

Table 1
Mesh-tallies used with the 512 domain mesh over the BEAVRS PWR geometry.
All tally meshes comprised of cubes covering the entire geometry, sized so
that no tally mesh bin crosses a domain boundary. For instance, mesh 1 had
one tally bin per domain coinciding exactly with the domain mesh, mesh 2
had 8 tally bins per domain, etc.

Mesh No. Tally Cells Tally Size (GB) % Memory

1 512 1.144× 10−5 0.00%
2 4096 9.155× 10−4 0.00%
3 5.316× 107 1.188 0.01%
4 4.252× 108 9.505 0.12%
5 3.402× 109 76.04 0.93%
6 6.816× 109 151.6 1.85%
7 1.369× 1010 305.9 3.73%
8 2.743× 1010 613.2 7.49%
9 5.487× 1010 1226 15.0%
10 1.095× 1011 2447 29.9%

3. ADDRESSING LOAD IMBALANCES

As discussed in [24], load imbalances are normally ex-
pected to occur as domains get smaller and leakage fractions
increase, incurring significant parallel inefficiencies when scal-
ing the number of domains. Several algorithmic strategies
exist to address this problem. In practice, a combination of
each method may be appropriate depending on the number
of compute nodes and domains, the severity of the load im-
balance, and the extent to which the spatial load distribution
is known.

3.1. Matching Resources to Load

The current DD implementation allows for any number
of processes to work on each domain, facilitating the use of
simple Cartesian domain meshes. If the load distribution on
such a mesh is known or can be approximated, the imbal-
ance problem can be solved to the extent that resources can

be deployed to match that distribution (see Figure 5). This
approach works particularly well if all domains have some
particles to transport, and the number of particles run does
not vary widely in adjacent domains.

However, for the light water reactor problem of interest
depicted in Figure 2 this is not sufficient to alleviate all load
imbalances when using regular Cartesian domain meshes.
For instance, it is clear that domains in the corners of the
geometry would have significantly fewer particles to track
than others. At least one node must still be assigned to each
domain to handle any particles that travel there; in the worst
case these nodes would spend all of their time idling between
synchronization steps if they have no particles to track.

Some specifics for determining how to distribute resources
according to load was discussed for Monte Carlo codes in [19]
and demonstrated for small-scale problems in a code that
performs re-balancing dynamically during a simulation. As
the authors of [19] point out, the calculation of the optimal
number of compute nodes for each domain is function of
the amount of work done on each domain, which takes into
account all work associated with interactions during particle
transport.

For the purposes of this study a simpler strategy was em-
ployed to demonstrate this idea. Here, compute nodes were
distributed based only on the number of starting particles in
each domain: information that was tallied from non-domain-
decomposed runs. Since the characteristics of particle trans-
port are relatively homogeneous for this problem at the scale
of the domains being used, this should work reasonably well.
Algorithm 3 describes the routine used to determine this distri-
bution for each domain mesh. This routine simply computes
the number of nodes to assign to each domain using the frac-
tion of the starting source in that domain, ensuring that all
domains would be tracked by at least one. For domains where
the fraction indicates that less than one node would be needed,
nodes are symmetrically reassigned from domains that have
the most nodes already working on them.

As shown in Figure 4, the quality of the matches produced
by this algorithm can be improved upon to a large degree.
Using the notation from Algorithm 3, the match discrepancy
d is calculated for each domain i as
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Fig. 3. Zoom of mesh-tally boundaries over a 3x3 section of BEAVRS pins (meshes 3 and 4) and a single pincell (meshes 5-10).
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Fig. 4. Statistics describing the match quality of the resource maps produced
by Algorithm 3 for the domain meshes described in Section 2.4.

d(i) =
abs (nodes(i)− f rac_nodes(i))

nodes(i)
. (14)

Values of zero indicate that the number of nodes needed for
that load was matched exactly. Since this algorithm assigns
at least one node to all domains, drawing nodes away from
domains with the highest loads, f rac_nodes(i) will always
be less than nodes(i), and values of one indicate that a node
was assigned to a domain that had an insignificant percentage
of the total load. It is clear that this is the case for the finer
meshes described in Section 2.4, where corner domains may
not cover meaningful portions of the problem geometry (e.g.,
see the corner domains in Figure 2).

Regardless of the poor quality, these resource mappings
do lead to reasonable load balancing performance, as shown
in Section 4.

Algorithm 3 Resource matching routine.
1: input n_domains, nodes_available, source
2: for i = 1→ n_domains do
3: f rac_nodes(i) = source(i)

sum(source) × nodes_available
4: nodes(i) =max (1, ceiling( f rac_nodes(i)))
5: end for
6: while sum(nodes)> nodes_available do
7: for i = 1→ n_domains do
8: if nodes(i) ==maxval(nodes) then
9: nodes(i) = nodes(i)− 1

10: Break
11: end if
12: end for
13: nodes = reverse(nodes) . Reverse order of the array
14: end while
15: Ensure nodes is in forward order
16: output nodes

Symbol Table
n_domains Number of domains
nodes_available Total number of available compute nodes
i Domain index
source(i) Number of starting particles in domain i
f rac_nodes(i) Fractional number of nodes needed for domain i
nodes(i) Output actual number of nodes for domain i
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3.2. Tailoring the Domain Mesh to Load

The other traditional way to manage load imbalances in
DD simulations is to size the domain mesh according to the
load. This requires some knowledge of the load distribu-
tion, as well as support for unstructured or irregular domain
meshes. OpenMC does not currently support general un-
structured meshes, so in order to demonstrate the effect on
performance a modified run mode was added to allow the
domain mesh to shrink (see Figure 5). In this mode materials
outside the domain mesh are loaded on all nodes, so particles
that travel there can continue to be tracked. However, tally
decomposition using this capability was not implemented.

3.3. Particle Density Manipulation

Load imbalances might also be addressed by enforcing
identical loads in each domain, adjusting weights of particles
to preserve the fair game. This can be done during transport
using traditional Monte Carlo variance reduction techniques
such as splitting and Russian Rouletting, or between particle
generations during source sampling in eigenvalue problems
with, for instance, the Uniform Fission Site (UFS) method
[26, 27]. The former can be used to achieve balance for all
space, whereas the latter is only helpful over source regions
(fuel assemblies in Figure 2).

It is also important to keep in mind that the effectiveness
of particle density manipulation to alleviate load imbalances
in DD simulations is not adequately described by a simple mea-
sure of parallel efficiency. Specifically, the choice of method
can strongly affect the statistical convergence of tallies in each
region of space. Indeed, this is why such methods are typi-
cally used for variance reduction in non-DD simulations. As
a result, efficiency should be assessed using a more general
figure of merit that includes the statistical convergence in
regions of interest. In particular, splitting/rouletting could
result in good load balance by manufacturing more work in
reflector regions that normally have few particles to run. This
improves the statistical quality of any tallies in those regions,
but reduces the quality of tallies in fuel regions of interest.
On the other hand, UFS serves to flatten the distribution of
variances in the fuel region - a desirable quality of the method.

4. Results

4.1. Domain Decomposition Performance

Load imbalance penalties were calculated for both test
problems from Equation 4 using observed run timings. The
DD problem was run for each case to obtain τ′ directly, and
τ was approximated by running the problem with identical
parameters and the traditional parallelization scheme. Since
the traditional parallelization scheme evenly divides particles
across all processes, these run timings will be equivalent to
τ (the time for the DD run to finish if it were perfectly load-
balanced) as long as the particle tracking term in Equation 2 is
significantly larger than the latency and bandwidth terms. On
Blue Gene/Q α and β are on the order of 10−8 - whereas µ∼
10−5 - so this is a decent approximation to make. Note that

1 1 1 1 1 1 1 1

1 2 4 5 5 4 2 1

1 4 6 4 4 6 4 1

1 5 4 3 3 4 5 1

1 5 4 3 3 4 5 1

1 4 6 4 4 6 4 1

1 2 4 5 5 4 2 1

1 1 1 1 1 1 1 1

Fig. 5. Radial view of the BEAVRS geometry showing the 8x8x8 DD for
three load-balancing strategies. Top: Resource matching; numbers indicate a
potential distribution for the number of processes working on each domain.
Middle: Restricted mesh; the domain is decomposed only over high-load
regions. Bottom: Particle density manipulation; colors indicate a potential
source biasing or particle re-weighting distribution.
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Fig. 6. Timing penalties (Equation 4) for the OpenMC domain decomposition
implementation for two eigenvalue test problems and several load-balancing
strategies, calculated from transport time only (total time - initialization and
finalization time). Domain meshes were evenly-spaced cubes overlaid on
top of the geometry, i.e., 2x2x2, 3x3x3, ..., 8x8x8. Each mesh was run with
one node per domain, with the exception of curve 3, where four times as
many nodes as domains were distributed across domains according to the
converged fission source distribution. Curve 4 was run with domain meshes
where the outer boundaries were located on the edge of the fuel assemblies,
as depicted in Figure 5. All runs were conducted as a weak-scaling study,
where the total number of particles transported was equal to 10000 per batch
per node (i.e., for all 512-domain runs, 5.12 million particles per batch).

all timings used in these equations refer to particle transport
only, and exclude initialization and finalization time. This is
consistent with the scaling study in [14], which demonstrates
excellent parallel efficiency for particle transport in OpenMC
using domain replication.

Figure 6 shows results for ∆ as the domain mesh was
refined. Curves 1 and 2 show results for the BEAVRS and
infinite medium problems, and curves 3-5 demonstrate the
effect of each of the three previously-discussed load balancing
strategies on the DD BEAVRS runs. All runs used one com-
pute node per domain with the exception of those in curve 3,
which distributed 4 times as many nodes as domains across
the space according to the converged particle source. Curve 1
is intended to demonstrate the overhead introduced by the
domain decomposition mechanics (i.e., the entire process of
buffering and sending particles) as distinct from load imbal-
ances, since the problem is naturally load-balanced in that
case.

Clearly the load imbalance penalty can be mitigated to a
significant degree. As expected, the efficacy of UFS decreases
as the number of domains that cover corner regions increases:
the method only flattens the particle density over the fuel
assembly region.

It should be noted that the domain boundaries in the
8-domain BEAVRS run split the particle load along lines of
symmetry. As a result, for those runs it is expected that the
load imbalance penalties mirror the infinite medium case.

All of the runs in Figure 6 were carried out in a weak-
scaling manner with 10k particles per domain. Figure 7 shows
how the implementation behaves when this parameter is var-
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BEAVRS, 27 Domains
BEAVRS, 512 Domains

Fig. 7. Timing penalties for the OpenMC domain decomposition implemen-
tation for two eigenvalue test problems when varying the number of particles
tracked per processor per batch.

ied. As can be expected, performance degrades as the amount
of work to do between synchronization points decreases and
the latency and bandwidth terms in Equation 2 start to domi-
nate. However, this result is encouraging when we note that
this regime does not begin until we get below 1k particles per
domain. This means that we can safely use very fine domain
meshes and achieve similar performance without needing to
increase total particle counts. It should also be noted that this
plot was created without any tallies, so in real cases particle
tracking will be slower and the situation more favorable.

4.2. Model Validation
The domain particle sources and leakage fractions were

tallied for all runs in curves 2 and 4 in Figure 6. These allowed
for the calculation of load imbalance penalties predicted by
the model using Equation 2, the unapproximated Equation 3,
and Equation 4. The same data can also be used to calculate
the approximate upper-bound penalties using Equation 13.
These results are shown in Figures 8 and 9. Consistent with
[28], the values of α and β were estimated as 10−6 seconds
per connection and 10−8 seconds per particle respectively (for
β , 2 GB/s links with roughly 200 bytes per particle transfered).
The particle tracking rate coefficient µwas set to 10−5 seconds
per particle, which is consistent with tracking rate values
observed for all runs on this machine.

The approximate upper-bounds appear valid for these
results, but direct calculation of penalties with the unapprox-
imated equations fall much closer to observed values. Note
that since these equations account for only particle transport
time and the latency/bandwidth times associated with send-
ing particles - missing the additional communication and com-
putation steps carried out in Algorithm 2 - it is not unexpected
for the direct calculation to underestimate the penalties. How-
ever, as observed we expect this additional overhead to stay
small, since the communication stencil inherent in Algorithm 2
does not grow with finer domain meshes.

The magnitude of the upper-bound is very sensitive to
‖λmax‖, which is a combination of the maximum domain
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Fig. 8. Load imbalance penalties for the BEAVRS problem without any load
balancing techniques (curve 2 in Figure 6) compared to direct calculation
using the performance model as well as predictions for the upper bound.
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Fig. 9. Load imbalance penalties for the BEAVRS problem using the restricted
mesh load balancing strategy (curve 4 in Figure 6) compared to direct cal-
culation using the performance model as well as predictions for the upper
bound.

leakage fractions over all stages. In many cases, it was ob-
served that later stages consisted of a small number of neu-
trons bouncing back and forth between domains (especially
common in reflector regions). In these cases the maximum
leakage fraction λmax

i tended to be unity, serving to inflate
the averaged leakage fraction considerably, and leading to
the over-estimation of the load imbalance penalty. This also
explains the apparent noise in the upper-bound curve of Fig-
ure 8: results are highly sensitive to the stochastic movements
of a very small number of particles. Overlapping-domain
strategies discussed in the literature (e.g. [22]) have been
shown to reduce this kind of particle movement, which would
lessen the impact of the latency and bandwidth terms.

To verify that the present derivation of the model upper-
bound is equivalent to that presented in [24], the previously-
reported leakage fraction and particle source data tallied
from full-scale OpenMC runs on the Monte Carlo Performance
Benchmark problem ([29]) were re-processed by the present

Table 2
Upper-bound model parameters computed using previously-tallied data, pre-
sented for verification. Dual table entries denote: (value reported in [24]),
(value calculated by the present authors).

Mesh C 1
Γ0

∆≤
Full Assembly 1.13, 1.13 3.24, 3.25 3.67, 3.68
Quarter 2.58, 2.53 3.28, 3.31 8.46, 8.38
Ninth 6.98, 7.06 3.45, 3.44 24.08, 24.25

Table 3
Directly-calculated load imbalance penalties predicted by the unapproximated
model equations from previously-tallied data. The full case used all data
(compare to the mesh in Figure 2), whereas the restricted case used data
only from assembly regions and stages where particles were run in assembly
regions (compare to the restricted mesh in Figure 5).

Mesh No. Domains ∆, restricted ∆, full
Full Assembly 5780 2.67 3.42
Quarter 46240 2.39 3.06
Ninth 156060 2.44 3.12

authors. These results are presented in Table 2, confirming the
equivalence between the two derivations. Note that for these
calculations tally data was only considered from assembly
regions and “active stages” (stages that had particles running
in assemblies, as opposed to reflector regions).

The previous tally data were also used to compute the
load imbalance penalties directly with Equations 2, 3, and 4,
presented in Table 3. These results are consistent with the
load imbalance penalties observed in Figure 6 for coarser
domain meshes.

4.3. Full-Core Tallies

Timing results for mesh-tallies 4-10 from Table 1 and
Figure 3 are presented in Figure 10 and Table 4. All were
done with analog fission tallies on the 8x8x8 domain mesh in
Figure 2. Tracklength flux tallies took marginally longer, but
identical trends were observed.

As expected, the amount of time needed to write output
files grows with tally size. However, for longer production
runs this will be constant and essentially negligible compared
to particle transport time. We also observe from Table 4 that
the equivalent non-DD run for mesh 3 is 3.3x faster than the
same DD run after subtracting finalization time. This is consis-
tent with the observed load imbalance penalty, and indicates
the small magnitude of the additional overhead incurred by
doing tallies. It should be noted that the finalization time for
mesh 3 is larger in the non-DD case because OpenMC does
not normally finalize tallies in parallel, instead consolidating
all results to a master process for output writing.

As indicated in Table 1, tally result files were approxi-
mately 4.8GB per domain, or ∼ 30% of node memory. Post-
processing was manageable with standard shell commands,
requiring for instance only 30 seconds of additional computa-
tion to parse and extract an axial slice of tally data from mesh
10.
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Fig. 10. Timing results for full-core analog fission tallies on meshes 4-10 in
Table 1. All runs were carried out for 10 batches (5 active) of 5.12 million
particles per batch on a half rack of Blue Gene/Q (512 compute nodes).

Table 4
Timing results in seconds for full-core tallies on the meshes in Table 1, as
depicted in Figure 10. I: Initialization time; F : finalization time; T : total
run time. For comparison, timings are also shown for the three smallest
mesh-tallies run with traditional parallelization (no domain decomposition),
as well as DD and non-DD versions of the same problem without any tallies.
No domain load balancing was employed.

Tally Mesh I F T

No DD no Tally N/A 41 0 278
No DD and Tally 3 37 267 626
DD no Tally N/A 40 0 977
DD and Tally 1 39 21 1205

2 40 21 1207
3 46 25 1222
4 37 46 1247
5 37 48 1280
6 39 74 1329
7 37 126 1412
8 39 229 1578
9 44 435 1859

10 42 908 2453

5. Conclusions

A simple version of domain decomposition was imple-
mented in the OpenMC Monte Carlo neutron transport code,
and an updated performance model was presented. Perfor-
mance was explored with a suite of runs carried out on a
half-rack of IBM Blue Gene/Q, which provided timing results
that quantify the magnitude of load imbalance penalties for a
detailed nuclear reactor geometry and empirically validate the
performance model. In addition, several basic load-balancing
strategies were explored and observed to mitigate these slow-
downs considerably, including a new and efficient way to
distribute extra compute nodes across the domain mesh. Fi-
nally, good performance was observed while carrying out
mesh-tallies of up to 2.4TB in size, distributed across 512
spatial domains.

This work demonstrates the feasibility of using spatial do-
main decomposition with high-fidelity Monte Carlo particle
transport methods to tally quantities at the Terabyte scale,
which is needed to conduct robust nuclear reactor depletion
analyses. Of particular interest is the observation (both em-
pirical and through the updated performance model) that the
load imbalance penalties for fine domain meshes may not be
as large as previously thought for these types of problems. Fur-
thermore, the good performance observed for Terabyte-scale
tallies in the present results imply that it may not be necessary
to use domain meshes much finer than those employed here,
especially since these tallies used only 40% of the available
node memory. The situation is expected to improve with the
implementation of advanced DD methods discussed in the
literature ([18, 19, 20, 21, 22]).

Future work should complete the implementation of cell
tallies that use an arbitrary depletion mesh. A particularly
desirable feature of this implementation will be the ability
to insulate the user from deciding on which domains mate-
rials and tallies need to be allocated for any given spatial
decomposition. Furthermore, since we speculate that the op-
timal configuration might entail utilizing data decomposition
among processers within each spatial domain, a marriage of
the two methods will be explored.

Once these final pieces are added, a more complete explo-
ration of the full-core fully-detailed depletion problem will be
possible with OpenMC, which is expected to perform well on
next-generation distributed computing architectures.
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