34 research outputs found

    Are some brain injury patients improving more than ohers?

    Get PDF
    Predicting the evolution of individuals is a rather new mining task with applications in medicine. Medical researchers are interested in the progress of a disease and in the evolution of individuals subjected to treatment. We investigate the evolution of patients on the basis of medical tests before and during treatment after brain trauma: we want to understand how similar patients can become to healthy participants. We face two challenges. First, we have less information on healthy participants than on the patients. Second, the values of the medical tests for patients, even after treatment started, remain well-separated from those of healthy people; this is typical for neurodegenerative diseases, but also for further brain impairments. Our approach encompasses methods for modelling patient evolution and for predicting the health improvement of different patient subpopulations, dealing with the above challenges. We test our approach on a cohort of patients treated after brain trauma and a corresponding cohort of controls

    Global Retinoblastoma Presentation and Analysis by National Income Level

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4) were female. Most patients (n = 3685 84.7%) were from low-and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 62.8%), followed by strabismus (n = 429 10.2%) and proptosis (n = 309 7.4%). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 95% CI, 12.94-24.80, and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 95% CI, 4.30-7.68). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs. © 2020 American Medical Association. All rights reserved

    Identification of Novel Variants in LTBP2 and PXDN Using Whole-Exome Sequencing in Developmental and Congenital Glaucoma

    Get PDF
    BACKGROUND: Primary congenital glaucoma (PCG) is the most common form of glaucoma in children. PCG occurs due to the developmental defects in the trabecular meshwork and anterior chamber of the eye. The purpose of this study is to identify the causative genetic variants in three families with developmental and primary congenital glaucoma (PCG) with a recessive inheritance pattern. METHODS: DNA samples were obtained from consanguineous families of Pakistani ancestry. The CYP1B1 gene was sequenced in the affected probands by conventional Sanger DNA sequencing. Whole exome sequencing (WES) was performed in DNA samples of four individuals belonging to three different CYP1B1-negative families. Variants identified by WES were validated by Sanger sequencing. RESULTS: WES identified potentially causative novel mutations in the latent transforming growth factor beta binding protein 2 (LTBP2) gene in two PCG families. In the first family a novel missense mutation (c.4934G>A; p.Arg1645Glu) co-segregates with the disease phenotype, and in the second family a novel frameshift mutation (c.4031_4032insA; p.Asp1345Glyfs*6) was identified. In a third family with developmental glaucoma a novel mutation (c.3496G>A; p.Gly1166Arg) was identified in the PXDN gene, which segregates with the disease. CONCLUSIONS: We identified three novel mutations in glaucoma families using WES; two in the LTBP2 gene and one in the PXDN gene. The results will not only enhance our current understanding of the genetic basis of glaucoma, but may also contribute to a better understanding of the diverse phenotypic consequences caused by mutations in these genes

    Gas chromatographic-mass spectrometric characterisation of tri- and tetrasaccharides in honey

    Full text link
    A GC-MS method has been used to characterize tri- and tetrasaccharides in honey after their derivatization into trimethylsilyloxime derivatives. Based on retention data and mass spectra, a total of 25 trisaccharides were characterized; 12 being unequivocally identified using standards and two of them detected for the first time in honey. Erlose and panose were the major trisaccharides in the 12 honeys under analysis, their concentrations ranging 30-1214 mg 100 g-1 of honey and 17-863 mg 100 g-1 of honey, respectively. The GC-MS method also allowed the analysis of tetrasaccharides. Besides nystose, another nine tetrasaccharides were characterized; six of them were sucrose derivatives. Tetrasaccharides were present in concentrations lower than 230 mg 100 g-1 of honey

    Homozygosity mapping and targeted sanger sequencing reveal genetic defects underlying inherited retinal disease in families from pakistan

    Get PDF
    Contains fulltext : 152997.PDF (publisher's version ) (Open Access)BACKGROUND: Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD). METHODS: We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucleotide polymorphism (SNP) array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families. RESULTS: Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1. CONCLUSIONS: Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future
    corecore