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Abstract

Background

Homozygosity mapping has facilitated the identification of the genetic causes underlying in-

herited diseases, particularly in consanguineous families with multiple affected individuals.

This knowledge has also resulted in a mutation dataset that can be used in a cost and time

effective manner to screen frequent population-specific genetic variations associated with

diseases such as inherited retinal disease (IRD).

Methods

We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed

with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary

night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucle-

otide polymorphism (SNP) array analysis to identify homozygous regions shared by affect-

ed individuals and performed Sanger sequencing of IRD-associated genes located in the

sizeable homozygous regions. In addition, based on population specific mutation data we
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performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290,
CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.

Results

Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the un-

derlying mutations in 10 families. TSS revealed causative variants in three families. In these

13 families four novel mutations were identified inCNGA1,CNGB1,GUCY2D, and RPGRIP1.

Conclusions

Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families,

which is useful for genetic counseling as well as therapeutic interventions that are likely to

become available in the near future.

Introduction
Inherited retinal diseases (IRD) refer to a clinically and genetically heterogeneous group of ge-
netic eye disorders in which the photoreceptors and retinal pigment epithelium can be affected.
There is an overlap of clinical features between different IRDs, which includes syndromic or
non-syndromic conditions. In cone dystrophy (CD), only central vision is impaired, whereas
in cone-rod dystrophy (CRD) peripheral vision is also compromised. In retinitis pigmentosa
(RP) initially peripheral vision is affected, which later progresses to central vision defects. In
contrast, congenital stationary night blindness (CSNB) only involves night vision loss due to
defective rod photoreceptors. The most severe form of IRD is Leber congenital amaurosis
(LCA), in which patients suffer from complete blindness in the first year of life [1–3]. In addi-
tion to clinical diversity, the genetic heterogeneity in IRDs is reflected by 221 genes that have
thus far been found to be mutated in IRD (https://sph.uth.edu/retnet/). Besides clear phenotyp-
ic differences, different defects in the same gene may also be responsible for different clinical
phenotypes, for example different variations in RPGRIP1 (MIM # 605446) are known to cause
RP, LCA and CRD, TULP1 (MIM # 602280) mutations have been shown to cause RP, LCA or
CD [4], and RPGR (MIM # 312610) variants are known to cause RP or CD [5]. It has also been
observed that the inherited forms of retinal diseases follow all Mendelian modes of inheritance
[3].

The prevalence of retinal dystrophies has been estimated at 1 in 3,000 individuals world-
wide, with RP being the most common type affecting 1 in 4,000 individuals [6–8]. In Pakistan
the prevalence of IRDs is not well defined but a hospital based study estimated that 1 in 800 pa-
tients who attended the ophthalmic outpatient department, were affected with retinal diseases,
with RP as the most common phenotype [9]. However, such inherited disorders have been ob-
served more commonly in consanguineous families than in non-consanguineous families.
Hamamy et al. [10] calculated the percentage of the mode of inheritance of genetically inher-
ited diseases and suggested that consanguinity is strongly correlated with the prevalence of au-
tosomal recessive diseases. In addition, similar observations have been made by Bittles [11] and
Nirmalan et al. [12]. In the Pakistani population more than 60% of marriages are consanguine-
ous, and among them more than 80% are first cousin marriages [11]. For consanguineous IRD
families with multiple affected individuals, the causative genetic defects can be identified using
genome wide single nucleotide polymorphism (SNP)-array analysis followed by homozygosity
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mapping [13–15]. In view of the high genetic heterogeneity, homozygosity mapping in most
isolated cases cannot unambiguously point to a single IRD-associated gene. Khan et al. [16]
comprehensively reviewed the genetic causes of IRDs in the Pakistani population, and pro-
posed an initial mutation screening method of IRDs by analyzing frequently occurring muta-
tions. Since 2008, we have collected 81 consanguineous IRD families in Pakistan, and reported
on the underlying genetic causes in 25 of these families [14,16–26].

In the current study we report the results from an additional 13 of these previously identi-
fied families. We performed genome-wide SNP genotyping followed by homozygosity map-
ping and candidate gene sequencing. In addition, we analyzed several families using targeted
Sanger sequencing (TSS) of frequently reported variations from Pakistani population in AIPL1
(MIM # 604392), CEP290 (MIM # 610142), CRB1 (MIM # 604210), GUCY2D (MIM #
600179), LCA5 (MIM # 611408), RPGRIP1 and TULP1.

Materials and Methods

Subjects
Since 2008, we have recruited 81 IRD families from different regions of Pakistan, i.e. CD (2
families), CSNB (5 families), LCA (36 families), and RP (38 families) (S1 Table).

Ethics statement
The current study adheres to the declaration of Helsinki, and was approved by the Department
of Biosciences Ethics Review Board of COMSATS Institute of Information Technology, Al-
Shifa Eye Trust Hospital, Rawalpindi and Shifa International hospital, Islamabad. The subjects
and their families were informed about the purpose of the study and their oral as well as written
consent was taken.

Clinical evaluations
The subjects were clinically diagnosed as CD, CSNB, LCA and RP on the basis of detailed oph-
thalmic evaluations and fundus examination. The affected individuals complaining of reduced
central vision with focusing error, photophobia and nystagmus were grouped as CD. The indi-
viduals experiencing non-progressive night blindness with normal day vision were categorized
as CSNB. The subjects were categorized as LCA if they were congenitally blind, had nystagmus,
and sluggish or non-reactive pupilary response. Finally, the cases reporting night vision loss
with progressive mid-peripheral vision deterioration were grouped as RP (S1 Table).

DNA isolation
Blood samples were drawn from all available affected and unaffected individuals of the family
into ethylenediamine tetra-acetic acid (EDTA)-coated vacutainers. DNA was extracted in Tris-
EDTA buffer using a standard organic extraction protocol for 53 families and stored at −20°C.
For the remaining 28 families, a standard salting out protocol was employed [27].

Genetic linkage analysis
Genetic linkage analysis was carried out for 53 of 81 families using microsatellite markers or
whole genome SNP array platforms such as Illumina_10K, Affymetrix_6K, Human Omni
express_700k and Cytoscan HD (Fig. 1, Table 1). The SNP array data were analyzed by homo-
zygosity mapping using an online tool ‘Homozygosity Mapper’ (http://www.
homozygositymapper.org/). Sanger sequencing was performed for IRD-associated genes.
These genes were prioritized according to the size of the region in which they were located.
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First, any mutation hotspot in the gene, if known, was sequenced followed by sequencing of
other exons along with flanking intronic sequences. Novel missense mutations were also
screened in ethnicity-matched controls (n = 90).

Targeted Sanger sequencing (TSS)
In probands from 28 families diagnosed with LCA (from a total of 36), the targeted variant
screening was done using Sanger sequencing (Table 2). The variants were chosen based on
their frequency in the Pakistani population [16]. In addition, we also screened our LCA panel
with other frequent variants that are associated with LCA in the Caucasian population includ-
ing the intronic CEP290 variant c.2991+1655A>G [28] and the GUCY2D exon 12 variant
c.2302C>T [29,30]. The RPGRIP1 variant (c.3565C>T) described by Abu-Safieh et al. [31]
was found to be segregating in one of our LCA families (F04) and therefore this variant was
also analyzed in our LCA cohort [16].

In silico analysis
The pathogenicity index for the identified missense mutations was calculated in silico using
Sorting Intolerant From Tolerant (SIFT) (http://sift.bii.a-star.edu.sg/), Mutation Taster (http://
www.mutationtaster.org/), and Polymorphism Phenotyping V2 (PolyPhen-2) (http://genetics.
bwh.harvard.edu/pph2/). The PhyloP score and Grantham distances were also recorded to
check the nucleotide conservation and change in amino acid physiochemical properties. The
frequency of the variant in the general population was determined using Exome Variant Server
(EVS) (http://evs.gs.washington.edu/EVS/), 1000 genomes and our in-house mutation data-
base, which contained exome sequence variant data of 2,096 persons with various human con-
ditions. To assess the effect of a missense change on the protein structure of CNGA1 we used
the HOPE server http://www.cmbi.ru.nl/hope/home).

Fig 1. Workflow on Pakistani inherited retinal disease cohort. Numbers in parentheses indicate families.

doi:10.1371/journal.pone.0119806.g001
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Table 1. Results of targeted Sanger sequencing and genetic analyses of 13 IRD families.

Family
ID

Disease Genotyping
method

Number of
Hz regions

Size of Hz
region, in
Mb

Ranking of
Hz region

Gene DNA mutation Predicted
protein variant

First report
of variant

F01 LCA TSS — — — AIPL1 c.834G>A p.(W278*) [32]

F02 LCA TSS — — — AIPL1 c.834G>A p.(W278*) [32]

F03 LCA TSS — — — GUCY2D c.2283del p.(S762Afs*22) This study

F04 LCA Cytoscan HD,
SS

5 14.0 1 RPGRIP1 c.3565C>T p.(R1189*) [31]

F05 LCA Illumina_700K,
SS

>10 4.5 19 RPGRIP1 c.930+1G>A p.(?) This study

F06 RP Illumina_700K,
SS

3 1.6 2 RPE65 c.131G>A p.(R44Q) [36]

F07 RP Illumina_700K,
SS

3 5.2 1 RPE65 c.361del p.(S121Lfs*6) [36]

F08 RP Illumina_700K,
SS

4 18.8 1 CNGA1 c.1298G>A p.(G433D) This study

F09 RP Illumina_700K,
SS

1 6.5 1 CNGB1 c.2493–2A>G p.(?) This study

F10 RP Illumina_700K,
SS

>10 13.4 2 CRB1 c.2234C>T p.(T745M) [38]

F11 RP Illumina_700K,
SS

>10 9.2 1 TULP1 c.1466A>G p.(K489R) [40]

F12 RP Illumina_700K,
SS

>10 6.5 1 PDE6A c. 304C>A p.(R102S) [41]

F13 RP Affymetrix 10K,
SS

6 — — RPGR c.2426_2427del p.(E809Gfs*25) [42]

Hz, Homozygous; Mb, Megabases; SS, Sanger sequencing entire gene; TSS, targeted Sanger sequencing; DNA, Deoxyribonucleic acid.

doi:10.1371/journal.pone.0119806.t001

Table 2. Frequent variants pre-screened in 28 LCA families.

Gene DNA variant Protein variant Reference

AIPL1 c.834G>A p.(W278*) [16,32,62,63]

CRB1 c.2234C>T p.(T745M) [38]

CRB1 c.2536G>A p.(G846R) [64]

CRB1 c.2966T>C# p.(I989T) [64]

CEP290 c.2991+1655A>G p.(C998*)/WT$ [28]

GUCY2D c.2302C>T p.(R768W) [30]

LCA5 c.1151del p.(P384Qfs*18) [63,65]

RPGRIP1 c.3565C>T p.(R1189*) [31]

TULP1 c.1138A>G p.(T380A) [17,40,63]

TULP1 c.1466A>G p.(K489R) [39,40]

#In original description [64] this variant erroneously was indicated as c.3101T>C.
$In lymphoblast cells, 50% of the resulting mRNA contains a cryptic exon resulting in a predicted stop mutation and 50% of the mRNA is normal [28].

doi:10.1371/journal.pone.0119806.t002
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Results, Discussion and Conclusions

Clinical analyses
Typical features of RP and LCA as described in S1 Table were observed in the corresponding
families and probands. The fundus pictures of the probands from selected families are given in
S1 Fig.

Families F01 and F02; AIPL1
The AIPL1 exon 6 variation, c.834G>A; p.(W278�) [32] is a frequent LCA-associated variant
worldwide and is responsible for 10% of the IRD cases reported so far in the Pakistani popula-
tion [16]. Sanger sequencing of AIPL1 exon 6 revealed two families with this mutation, which
segregated with the disease in these families (Fig. 2, Table 1).

Family F03;GUCY2D
Mutations in GUCY2D are known to cause LCA and CRD [33,34]. In our cohort of LCA, dur-
ing targeted sequencing of exon 12 to search for c.2302C>T; p.(R768W) variant, we coinciden-
tally identified a novel frame-shift mutation c.2283del; p.(S762Afs�22) in one LCA family
(F03). Both affected siblings were homozygous for this 1-bp deletion whereas parents were het-
erozygous carriers (Fig. 2, Table 1).

Families F04 and F05; RPGRIP1
Genetic linkage analysis revealed homozygous regions harboring the LCA-associated gene
RPGRIP1 in two of the families (F04 and F05) from the LCA panel. Upon sequencing RPGRIP1
in family F04, a previously identified nonsense mutation c.3565C>T; p.(R1189�) [31] was
identified in exon 22, which segregated with the phenotype in the family (Fig. 2, S1 Fig.). In
family F05, a novel canonical splice donor site variation (c.930+1G>A; p.(?)) in intron 7 of the
gene was identified. As the canonical splice donor site is affected, intron 7 retention or skipping
of exon 7 in the mRNA is most plausible. Intron 7 retention would result in a frameshift that
creates an early stop codon after 15 bp resulting in a truncated protein of 315 amino acid resi-
dues instead of the full length 1,286 amino acids (Fig. 2, Table 1). Skipping of exon 7 would not
result in a frameshift but a deletion of 8 amino acid residues that might affect the three dimen-
sional structure and thereby the function of the protein.

Family F06 and F07; RPE65
The SNP array data of families F06 and F07 were analyzed to identify homozygous regions car-
rying the genes of interest. In both families, RPE65 was identified in one of the largest homozy-
gous regions. Upon sequencing, the most recurrent mutations, c.131G>A; p.(R44Q) [35] and
361del; p.(S121Lfs�6) [36], were identified in a homozygous state in all affected persons of fam-
ilies F06 and F07, respectively (Fig. 2, S1 Fig., Table 1, S2 Table).

Family F08; CNGA1
Homozygosity mapping data of family F08 revealed the arRP-associated gene CNGA1 in the
largest homozygous region of ~19 Mb. Upon Sanger sequencing a novel missense mutation
c.1298G>A; p.(G433D) was identified in the proband. This variant is not only absent in EVS
and 1000 genomes public mutation databases, but also in our in-house WES database as well as
from 90 ethnicity-matched healthy controls. Segregation analysis indicated that the mutation is
present homozygously in affected individuals of the family whereas the normal individuals are
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heterozygous carriers (Fig. 2, Table 1). In silico analysis supported the pathogenicity of the mu-
tation (S2 Table). The highly conserved non-polar glycine residue at position 433 is substituted
by the charged aspartate, a bigger sized amino acid that is also less flexible than glycine. The
wild type residue is predicted to be buried in a coiled region on the cytoplasmic face of the ion
transport domain. The 433D residue can create structural instability and can affect the ion
transport function of the protein [37].

Fig 2. Pedigree structure and segregation analysis of disease causing variants in the IRD cohort.
Arrows point to the probands.

doi:10.1371/journal.pone.0119806.g002
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Family F09; CNGB1
The largest homozygous region of 6.5 Mb identified in family F09 harbored the arRP-associat-
ed gene CNGB1. Sequence analysis identified a novel homozygous canonical splice acceptor
site mutation in intron 25 of CNGB1, c.2493-2A>G; p.(?), which segregated with the disease in
the family (Fig. 2). This variant may result in exclusion of exon 26 from the transcript. The
open reading frame would be shifted in the resulting transcript, leading to a truncated protein
consisting of 831 amino acids (full length protein is 1,251 amino acids). In addition, due to this
variation, a strong splice donor site is predicted that could result in the inclusion of a large part
of intron 25 and exclusion of exon 26, which eventually would also lead to a premature stop
codon (Fig. 2, Table 1, S1 Fig.).

Family F10; CRB1
Homozygosity mapping positioned the arRP- and LCA-associated gene CRB1 in one of the ho-
mozygous regions, which was shared between the affected individuals. A previously reported
missense mutation, c.2234C>T; p.(T745M) [38], affecting the Laminin-G domain, was identi-
fied that segregated with the disease phenotype in the family (Fig. 2, Table 1, S2 Table).

Family F11; TULP1
The largest homozygous region obtained for family F11 harbored TULP1, known to be associ-
ated with arRP and LCA. We identified a previously reported missense change, c.1466A>G; p.
(K489R) [39,40], segregating with the disease phenotype in the family (Fig. 2, Table 1, S1 Fig.,
S2 Table).

Family F12; PDE6A
Homozygosity mapping of family F12 revealed that PDE6A was in the largest region which
spanned 6.5 Mb. The gene was sequenced and a previously identified missense mutation,
c.304C>A; p.(R102S), was found to segregate with the disease phenotype in the family [41]
(Fig. 2, Table 1, S2 Table).

Family F13; RPGR
Family F13 was initially sampled as an autosomal recessive RP family but based on the pedigree
structure (affected persons in multiple generations) and the fact that the far majority of the af-
fected individuals are males, suggested X-linked inheritance. The analysis of SNP array data in-
deed pointed to RPGR as the candidate disease gene, as the region on the X-chromosome
harboring this gene was found to be shared by all affected males. Sequence analysis of RPGR
identified a 2-bp deletion, c.2426_2427del; p.(E809Gfs�25), in this family [42]. Interestingly,
one of the affected females was also homozygous for the deletion, which is extremely rare in X-
linked disorders (Fig. 2, Table 1) [43].

Inherited retinal diseases represent a diverse group of eye disorders that are heterogeneous
both at the genotype and phenotype level. So far, mutations in 221 genes have been associated
with syndromic and non-syndromic inherited retinal dystrophies, and still more are to be iden-
tified. This study underscores the genetic diversity of IRD as we report mutations in 10 differ-
ent genes causing IRD in 13 families. To come to these results, we performed homozygosity
mapping and candidate gene sequencing. This approach is successful for most of the consan-
guineous families. In outbred families this approach is only successful in a small proportion of
families [13]. For such families, a pre-screening of frequently reported mutations can be an al-
ternative method before starting with any high throughput analysis like next generation
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sequencing (NGS). To test this, we performed TSS of frequently found causative variants from
seven IRD genes (Table 2) in 28 LCA probands. Despite being frequent in Pakistani and the
Caucasian populations, most of them were not found in 25 families except the AIPL1 variant p.
(W278�), which was present in two families (F01 and F02). We were unable to find the recur-
rent exon 12 variant, p.(R768W) in GUCY2D. However, in the same exon, a novel variant (p.
(S762Afs�22)) was identified in the proband of family F03. As we were able to solve only three
families using TSS, this does not seem to be the best approach. For other populations this ap-
proach only makes sense if the frequent population-specific mutations are known.

Basic research in genetics has not only elucidated the underlying mutations in the causative
genes but also provided initial information helpful for designing gene therapy. It has been esti-
mated that 81.5% of all the gene therapy trials in the world are focused on cancer, cardiovascu-
lar diseases and monogenic inherited disorders. Other broadly targeted areas for gene therapy
include infectious diseases, neurological disorders, ocular diseases, inflammatory diseases and
diseases such as chronic renal disease, diabetes, etc [44]. The pre-clinical studies in model or-
ganisms, before initiation of any human trials, have provided detailed information not only on
the therapeutic efficacy but also about safety and toxicity issues. Moreover, choosing the right
model organism, which can provide as much information as possible for human trials is equal-
ly important [45]. In case of retinal disease gene therapy trials, a number of successful animal
models have been described, for example, AIPL1, GUCY2D, RPGRIP1 and TULP1 knock out
mouse models have already been reported in which gene therapy was explored [46–49]. In ad-
dition to mouse models, dog models for RPGR and RPGRIP1 gene therapy are also known
[50]. Similarly, PDE6A and PDE6B gene therapy proof-of-principle in mouse models were re-
ported by Wert et al. [51]. The delivery method of a recombinant gene construct is important.
For example, AAV-based gene therapy has been shown to be successful in a CRD dog model
and in humans with RPE65-associated LCA [52–57], as well as in choroideremia subjects [58].
The major limitation of AAV-vector based gene therapy is that these vectors cannot carry in-
serts larger than 4.9 kb, and therefore other methods, viral and non-viral, are needed. Other
types of treatments are based on antisense oligonucleotides for CEP290-associated retinal de-
generation [59,60]. Besides these genetic approaches, an oral drug therapy based on 9-cis-reti-
noid was successful in persons with RPE65 and LRATmutations [61]. Thus, finding new
associations for the IRD will not only add scientific knowledge but will also provide critical in-
formation for therapeutics.

In addition to gene therapy, another important aspect is genetic counseling. In the X-linked
and autosomal recessive families, unaffected persons can be tested for carriership of the causal
variants. Early genetic counseling may include advice on choosing appropriate studies and pro-
fessions, improving their quality of life. Through proper genetic counseling the prevalence of
the respective diseases in these families may decrease.

In conclusion, using homozygosity mapping, Sanger sequencing and TSS approaches we
were able to identify the underlying genetic causes in 13 IRD families from Pakistan, and iden-
tified four novel variations in CNGA1, CNGB1, GUCY2D and RPGRIP1 in four
different families.

Supporting Information
S1 Fig. Fundus photographs of selected probands from families F04, F06, F09 and F11. Ar-
rows mark the vessel attenuation, arrowheads represent changes in macula and a block arrows
mark the pigmentary changes.
(TIF)
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