26 research outputs found

    Multiple-hour-ahead forecast of the Dst index using a combination of Long Short-Term Memory neural network and Gaussian process

    Get PDF
    In this study, we present a method that combines a Long Short-Term Memory (LSTM) recurrent neural network with a Gaussian process (GP) model to provide up to 6-hr-ahead probabilistic forecasts of the Dst geomagnetic index. The proposed approach brings together the sequence modeling capabilities of a recurrent neural network with the error bars and confidence bounds provided by a GP. Our model is trained using the hourly OMNI and Global Positioning System (GPS) databases, both of which are publicly available. We first develop a LSTM network to get a single-point prediction of Dst. This model yields great accuracy in forecasting the Dst index from 1 to 6 hr ahead, with a correlation coefficient always higher than 0.873 and a root-mean-square error lower than 9.86. However, even if global metrics show excellent performance, it remains poor in predicting intense storms (Dst < −250 nT) 6 hr in advance. To improve it and to obtain probabilistic forecasts, we combine the LSTM model obtained with a GP and evaluate the hybrid predictor using the receiver operating characteristic curve and the reliability diagram. We conclude that this hybrid methodology provides improvements in the forecast of geomagnetic storms, from 1 to 6 hr ahead

    Intelligent image-based colourimetric tests using machine learning framework for lateral flow assays

    Get PDF
    This paper aims to deliberately examine the scope of an intelligent colourimetric test that fulfils ASSURED criteria (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, and Deliverable) and demonstrate the claim as well. This paper presents an investigation into an intelligent image-based system to perform automatic paper-based colourimetric tests in real-time to provide a proof-of-concept for a dry-chemical based or microfluidic, stable and semi-quantitative assay using a larger dataset with diverse conditions. The universal pH indicator papers were utilised as a case study. Unlike the works done in the literature, this work performs multiclass colourimetric tests using histogram based image processing and machine learning algorithm without any user intervention. The proposed image processing framework is based on colour channel separation, global thresholding, morphological operation and object detection. We have also deployed a server based convolutional neural network framework for image classification using inductive transfer learning on a mobile platform. The results obtained by both traditional machine learning and pre-trained model-based deep learning were critically analysed with the set evaluation criteria (ASSURED criteria). The features were optimised using univariate analysis and exploratory data analysis to improve the performance. The image processing algorithm showed >98% accuracy while the classification accuracy by Least Squares Support Vector Machine (LS- SVM) was 100%. On the other hand, the deep learning technique provided >86% accuracy, which could be further improved with a large amount of data. The k-fold cross validated LS- SVM based final system, examined on different datasets, confirmed the robustness and reliability of the presented approach, which was further validated using statistical analysis. The understaffed and resource limited healthcare system can benefit from such an easy-to-use technology to support remote aid workers, assist in elderly care and promote personalised healthcare by eliminating the subjectivity of interpretation

    Non-AIDS defining cancers in the D:A:D Study-time trends and predictors of survival : a cohort study

    Get PDF
    BACKGROUND:Non-AIDS defining cancers (NADC) are an important cause of morbidity and mortality in HIV-positive individuals. Using data from a large international cohort of HIV-positive individuals, we described the incidence of NADC from 2004-2010, and described subsequent mortality and predictors of these.METHODS:Individuals were followed from 1st January 2004/enrolment in study, until the earliest of a new NADC, 1st February 2010, death or six months after the patient's last visit. Incidence rates were estimated for each year of follow-up, overall and stratified by gender, age and mode of HIV acquisition. Cumulative risk of mortality following NADC diagnosis was summarised using Kaplan-Meier methods, with follow-up for these analyses from the date of NADC diagnosis until the patient's death, 1st February 2010 or 6 months after the patient's last visit. Factors associated with mortality following NADC diagnosis were identified using multivariable Cox proportional hazards regression.RESULTS:Over 176,775 person-years (PY), 880 (2.1%) patients developed a new NADC (incidence: 4.98/1000PY [95% confidence interval 4.65, 5.31]). Over a third of these patients (327, 37.2%) had died by 1st February 2010. Time trends for lung cancer, anal cancer and Hodgkin's lymphoma were broadly consistent. Kaplan-Meier cumulative mortality estimates at 1, 3 and 5 years after NADC diagnosis were 28.2% [95% CI 25.1-31.2], 42.0% [38.2-45.8] and 47.3% [42.4-52.2], respectively. Significant predictors of poorer survival after diagnosis of NADC were lung cancer (compared to other cancer types), male gender, non-white ethnicity, and smoking status. Later year of diagnosis and higher CD4 count at NADC diagnosis were associated with improved survival. The incidence of NADC remained stable over the period 2004-2010 in this large observational cohort.CONCLUSIONS:The prognosis after diagnosis of NADC, in particular lung cancer and disseminated cancer, is poor but has improved somewhat over time. Modifiable risk factors, such as smoking and low CD4 counts, were associated with mortality following a diagnosis of NADC

    The Physics of the B Factories

    Get PDF

    Overview of the meteorology and transport patterns during the DAURE field campaign and their impact to PM observations

    No full text
    The experimental campaign “Determination of the sources of atmospheric Aerosols in Urban and RuralEnvironments in Spain “(DAURE) took place in a urban (Barcelona city) and a rural (the Montseny Natural Park) Spanish sites. Its main objective was to study the formation and transport processes of particulate matter in the region during winter and summer time. This paper presents a description of the meteorological conditions during the campaign by means of meteorological observations, high-resolution mesoscale meteorological modelling and backward Lagrangian particle dispersion simulations. Modelling results are in agreement with observations and provide a valuable tool for characterizing transport patterns in relation to episodes of air pollution. An objective classification of the synoptic conditions and a classification of the main local dispersion patterns is presented and discussed. Additionally, themeasured PM1 and PM10 levels in both urban and rural sites are discussed and related to the meteorological conditions observed.Preprin
    corecore