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Abstract in this study, we present a method that combines a Long Short-Term Memory (LSTM)
recurrent neural network with a Gaussian process (GP) model to provide up to 6-hr-ahead probabilistic
forecasts of the Dst geomagnetic index. The proposed approach brings together the sequence modeling
capabilities of a recurrent neural network with the error bars and confidence bounds provided by a GP.
Our model is trained using the hourly OMNI and Global Positioning System (GPS) databases, both of
which are publicly available. We first develop a LSTM network to get a single-point prediction of Dst. This
model yields great accuracy in forecasting the Dst index from 1 to 6 hr ahead, with a correlation
coefficient always higher than 0.873 and a root-mean-square error lower than 9.86. However, even if
global metrics show excellent performance, it remains poor in predicting intense storms (Dst < —250 nT)
6 hr in advance. To improve it and to obtain probabilistic forecasts, we combine the LSTM model obtained
with a GP and evaluate the hybrid predictor using the receiver operating characteristic curve and the
reliability diagram. We conclude that this hybrid methodology provides improvements in the forecast of
geomagnetic storms, from 1 to 6 hr ahead.

1. Introduction

It is widely accepted that solar wind/magnetosphere coupling plays a key role in determining the Earth’s geo-
magnetic state. Under appropriate conditions, this coupling can lead to injection of energetic particles into
the Earth’s auroral and equatorial plasma currents, leading to geomagnetic storms. The solar wind conditions
that are effective for creating geomagnetic storms are sustained periods of high-speed solar wind and a
southward directed solar wind magnetic field (Burton et al., 1975). When Akasofu (1981) studied the coupling
function between the solar wind and geomagnetic disturbance, they observed that during these extreme
events, the key process is the magnetic reconnection. It produces an enhancement of fluxes of particle, which
creates a depression of the horizontal component (H) of the Earth’s magnetic field and an intensification
of the westward ring current circulating the Earth (Gonzalez et al., 1994). When there is a geomagnetic
storm, the energy content of the ring current increases. This increase is inversely proportional to the
strength of the surface magnetic field at low latitudes. To assess the severity of geomagnetic storms,
the Dst index or disturbance storm time index is often used.

The Dst index (Sugiura, 1964) is based on four low-latitude stations and represents the axis-symmetric
magnetic signature of magnetosphere currents (such as the ring current, the tail currents, and the
Chapman-Ferraro current). It is computed using 1-hr average values of the horizontal component of the
Earth’s magnetic field and is expressed in nanotesla (nT). In the case of a typical magnetic storm, three phases
are observed according to Dst variations. First, there is a sudden drop corresponding to the storm com-
mencement. Second, the value of Dst stays in its excited state as the ring current intensifies (main phase).
Finally, once the z -component of the interplanetary magnetic field (IMF) turns northward, the ring current
begins to recover and rises back to its quiet level (recovery phase).

Geomagnetic indices like Dst are used in Space Weather to describe and predict effects of the solar wind
on geomagnetic environment and human infrastructures. It has been long observed that important geo-
magnetic storms disrupt human-made systems on Earth; they can impact satellites and the path of radio
signals for Global Positioning System (GPS), disrupt navigation systems, and create harmful geomagnetic-
induced currents in the power grids and pipelines. One of the important research problems in Space
Weather is to predict geomagnetic disturbances, in order to protect technological infrastructure (Singh
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et al,, 2010). The aim of this study is to propose an accurate and reliable probabilistic model to predict
Dst from 1 to 6 hr ahead.

The Dst prediction problem has been extensively researched. Burton et al. (1975) developed a model that
expressed the time evolution of Dst as an ordinary differential equation. This method takes into account
the particle injection from the plasma sheet into the magnetosphere and expresses it based on the velo-
city, the density of the solar wind and on the north-south magnetic component of the IMF. lyemori et al.
(1979) used a linear filtering prediction method to connect Dst and the southward component of the IMF.
The linear assumption, however, has limitations since the solar wind and magnetosphere form a coupled
nonlinear system.

To model this nonlinear behavior, various models have been proposed. A popular approach used to model
nonlinear systems is based on artificial neural networks (ANN; Haykin, 1998). One of the earliest models of
Dst prediction based on ANNs is due to Lundstedt and Wintoft (1994). They developed a feedforward neural
network (NN) to predict Dst 1 hr ahead, using the Bz component, the density, and the velocity of the solar
wind. This model was able to model the initial and the main phase well, but the recovery phase was not mod-
eled accurately. Gleisner et al. (1996) developed a time delay NN (Waibel et al., 1989) to predict Dst 1 hr ahead
using the proton density, solar wind velocity, and the Bz component of the IMF. This approach managed to
improve the prediction of storm recovery phases, showing the benefits of using the time history of solar wind
inputs. Wu and Lundstedt (1997) used an Elman recurrent network (Elman, 1990) to provide forecast of the
Dst index from 1 to 6 hr ahead. Later, Lundstedt et al. (2002) used the same network architecture to provide
an operational forecast of the Dst index 1 hr ahead and improve again the performance of prediction. Wing
etal. (2005) used a recurrent network to provide an operational forecast of the Kp index. The success of these
operational models demonstrates that recurrent networks are quite useful in the empirical modeling of
magnetospheric response to solar wind drivers.

Another approach, which is at the intersection between physical models and NNs, is provided by Bala and
Reiff (2012). Their approach is based on ANNs and uses the so called Boyle index, which represents the steady
state polar cap potential and is a combination of the velocity of the solar wind, the magnitude of the IMF and
the IMF clock angle, as an input. It is used to predict Kp, Dst, and AE and provides good performance to pre-
dict them from 1 to 6 hr ahead. Lazzus et al. (2017) use particle swarm optimization (Kennedy & Eberhart,
1995), instead of the Backpropagation algorithm (Rumelhart & McClelland, 1986), to learn the ANN connec-
tion weights. Results obtained in this study show that particle swarm optimization can provide benefits for
generating forecasts of Dst from 1 to 6 hr ahead.

The NARMAX methodology is an empirical model and has been also used. It is a powerful non linear model,
based on polynomial expansions of inputs, and the optimization of monomial combinations to minimize the
error. Past studies already proved the strength of this model (Ayala Solares et al., 2016; Balikhin et al., 2011;
Boynton et al.,, 2011; Rastétter et al., 2013; Wei et al., 2011).

Chandorkar et al. (2017) pointed out that various techniques have been used to predict Dst, but do not focus
on providing probabilistic predictions. Their model is based on Gaussian process (GP) to construct autore-
gressive models to predict Dst 1 hr ahead, based on past values of Dst, and also on the velocity of the solar
wind and the z component of the IMF. In this study, they show that it is possible to generate an accurate pre-
dictive distribution of the forecast instead of a single point prediction. This is important in the Space Weather
domain where operators require error bars on predictions. However, the mean value of the forecast does not
yield a performance as accurate as the one provided by ANN.

All these models are based either on solar wind parameters and past values of Dst. One of the most striking
features of the Dst index is the link between Dst variation and the impact on GPS satellites. It is widely known
that when there is a geomagnetic storm, the quality of the GPS signal is disturbed (Astafyeva, 2009). The mag-
netic field measured onboard GPS satellites might be a key information when an important storm occurs.
Recently, GPS data have been publicly released under the terms of the Executive Order for Coordinating
Efforts to prepare the Nation for Space Weather Events (Morley et al.,, 2017).

In this work, we propose a technique to combine the great performance of an ANN with the advantage of the
probabilistic forecast provided by GP. We use a specific ANN called Long Short-Term Memory (LSTM) NN
(Hochreiter & Schmidhuber, 1997) to provide a single-point prediction of the geomagnetic index from 1 to
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S ana hh 2052 6 hr ahead. It is a specific recurrent network, which has never been used in

sy Space Weather applications before. Then we use this prediction as the
mean function of a GP to obtain a probabilistic forecast based on this sin-
gle prediction from 1 to 6 hr ahead. This process is called GPNN. Input
parameters of this GPNN are solar wind parameters (density, velocity,
IMF | B|, and Bz), past values of Dst from 1 to 6 hr, and the magnetic field
measured onboard GPS satellites.

The remainder of this paper is organized as follows: section 2 presents the
data used in this study. Section 3 describes the computational method,
how the LSTM and the combination of this ANN and the GP called GPNN
are developed and optimized. Section 4 presents the results of the optimi-
zation of the LSTM forecast from 1 to 6 hr ahead, and the evaluation of the
probabilistic forecast provided by the GPNN method.

02/23/04 08/15/09 02/05/15

Figure 1. Temporal coverage of database used in this study and in previous

studies. Wu and Lundstedt (1997) is in orange and their database starts in

1963, Bala and Reiff (2012) is in yellow, Lazzus et al. (2017) is in blue, and our 2. Data
study is in green. The f10.7 in grey represents the variation of solar activity.

Solar wind parameters and the geomagnetic Dst index are taken from the
OMNI database (https://omniweb.gsfc.nasa.gov/ow.html) maintained by
the National Space Science Data Center (NSSDC) of National Aeronautics
and Space Administration (NASA).

We also consider GPS data, which are provided by the National Oceanic and Atmospheric Administration
(NOAA). These data are provided by the team working on the Combined X-ray dosimeter or CXD at the
Los Alamos National Laboratory (https://www.ngdc.noaa.gov/stp/space-weather/satellite-data/satellite-sys-
tem/gps/). In this study, we decided to use data recorded by the GPS satellite ns41, which has the widest
temporal coverage (Morley et al.,, 2017).

Figure 1 shows the temporal coverage of the database used in this study, compared to previous studies.
The temporal coverage of our study is represented by the green line. As GPS ns41 data start at 00:00 14
January 2001, we consider a set of 134,398 hourly data of solar wind parameters, geomagnetic Dst index,
and GPS data between this starting date and 23:00 31 December 2016. This includes 49 storm times, listed
in Table 1. Part of those storm times were included in the list used in Ji et al. (2012) and Chandorkar
et al. (2017).

Studies done in the past to predict the geomagnetic index Dst have shown that various solar wind para-
meters are of interest to optimize the performance of predicting models. In the present study, we focused
on the use of the density n, the velocity V, the IMF|B|, and its B, component. Concerning parameters provided
by the GPS ns41, we use the magnetic field measured by the GPS, Bsatgps.

3. Computational Method
3.1. Description of the LSTM NN

The LSTM NN belongs to the family of recurrent neural network (RNN). In a RNN, hidden layers are built to
allow information persistence. They behave as a loop to allow information to be passed from one cell of
the network to the next. When this loop is unrolled, the RNN can then be thought as multiple copies of
the same network. This specific architecture is thought to be very efficient in forecasting time series.

Hochreiter (1991) and Bengio et al. (1994) underlined a weakness of RNN. They are supposed to connect past
information to the present, but if the information needed is too far in the past, RNN are unable to learn how to
connect the information. This failure is due to the vanishing gradient problem occurring during the training
phase of RNN.

LSTM are designed to avoid this problem. They are made to remember information for long periods of time.
They have a chain-like structure like RNN, but the repeating module has a specific structure. Figure 2 repre-
sents a LSTM cell. Two elements are fundamental in this cell: the cell state and gates. The cell state in green on
Figure 2 is like a conveyor belt, which is connected to gates. Gates can add or remove information from the
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Table 1

List of Storm Events

Start date Start time End date End time Min. Dst (nT)
19 March 2001 1500 21 March 2001 2300 —149
31 March 2001 400 1 April 2001 2100 —387
18 April 2001 100 18 April 2001 1300 —114
22 April 2001 200 23 April 2001 1500 —102
17 August 2001 1600 18 August 2001 1600 —105
30 September 2001 2300 2 October 2001 0 —148
21 October 2001 1700 24 October 2001 1100 —187
28 October 2001 300 29 October 2001 2200 —157
23 March 2002 1400 25 March 2002 500 —100
17 April 2002 1100 19 April 2002 200 —127
19 April 2002 900 21 April 2002 600 —149
11 May 2002 1000 12 May 2002 1600 —110
23 May 2002 1200 24 May 2002 2300 -109
1 August 2002 2300 2 August 2002 900 —102
4 September 2002 100 5 September 2002 0 —109
7 September 2002 1400 8 September 2002 2000 —181
1 October 2002 600 3 October 2002 800 —-176
20 November 2002 1600 22 November 2002 600 —128
29 May 2003 2000 30 May 2003 1000 —144
17 June 2003 1900 19 June 2003 300 —141
11 July 2003 1500 12 July 2003 1600 —105
17 August 2003 1800 19 August 2003 1100 —148
20 November 2003 1200 22 November 2003 0 —422
22 January 2004 300 24 January 2004 0 —149
11 February 2004 1000 12 February 2004 0 —105
3 April 2004 1400 4 April 2004 800 —-112
22 July 2004 2000 23 July 2004 2000 —101
24 July 2004 2100 26 July 2004 1700 —148
26 July 2004 2200 30 July 2004 500 —197
30 August 2004 500 31 August 2004 2100 —126
11 November 2004 2200 13 November 2004 1300 —109
21 January 2005 1800 23 January 2005 500 —105
7 May 2005 2000 9 May 2005 1000 —127
29 May 2005 2200 31 May 2005 800 —138
12 June 2005 1700 13 June 2005 1900 —106
31 August 2005 1200 1 September 2005 1200 —131
13 April 2006 2000 14 April 2006 2300 111
14 December 2006 2100 16 December 2006 300 —147
26 September 2011 1400 27 September 2011 1200 —101
24 October 2011 2000 25 October 2011 1400 —132
8 March 2012 1200 10 March 2012 1600 —-131
23 April 2012 1100 24 April 2012 1300 —108
15 July 2012 100 16 July 2012 2300 —127
30 September 2012 1300 1 October 2012 1800 -119
8 October 2012 200 9 October 2012 1700 —105
13 November 2012 1800 14 November 2012 1800 —108
17 March 2013 700 18 March 2013 1000 —132
31 May 2013 1800 1 June 2013 2000 —-119
18 February 2014 1500 19 February 2014 1600 —-112

cell state depending on information required by the cell. Basically, three gates are used: an input gate in blue,
a forget gate in purple, and an output gate in red on Figure 2.

The forget gate can be represented by equation (1).

fe = o(We(her, X¢) + bf)

m
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Figure 2. LSTM cell. The cell state is in green, the forget gate in purple, the

with ¢ a sigmoid function and W¢and by, respectively, the weight and bias
of this layer. This notation is kept for subsequent equations. This gate

I Ct compares the information coming from the previous cell h; _ ; and the
incoming information x; and outputs for C; _ ; a number between 0 and
1, 0 if the information is rejected, 1 if it is kept.

Then, the input gate layer decides the information that needs to be stored,
depending on past information. It behaves like the forget gate as
described by equation (2). It is connected to a tanh layer to create a vector

of candidate values C; following equation (3).

i = a(Wihe1, x¢) + b;) @)

input gate in blue, and the output gate in red.

with W; and b; respectively, the weight and bias of this layer.

Ci = tanh(Wc(hi_1, X;) + bc) 3)

with W, and b, respectively, the weight and bias of this layer.

We described earlier that the cell state and gates are connected to add or remove information, so the next
step consists in the update of C;_; to obtain C, the new cell state. This is represented in orange on
Figure 2 and by equation (4).

Ct = ft* Ct71 + ir*Er (4)

Then the last step is done through the output gate detailed by equation (5). First, the sigmoid layer helps to
define the output. Second, a tanh multiply the cell state by the output of the sigmoid gate to obtain the
required information.

Ot = O'(Wo(ht—h Xt) + bo)
ht = opx tanh (Cp)

3.2. Training and Optimization of the LSTM

The LSTM NN is trained with a backpropagation algorithm, and thanks to its architecture, the gradient
does not tend to vanish. To train a NN, most of the time, the gradient descent optimization algorithm used
is the Levenberg-Marquardt (Marquardt, 1963), but here we considered the RMSprop. RMSprop is an
unpublished adaptative learning rate method proposed by Geoff Hinton (http://www.cs.toronto.edu/~tij-
men/csc321/slides/lecture_slides_lec6.pdf). Parameters like weights and bias of the network are described
using the notation 6. We then define with equation (6) g, ; as the gradient of the objective function with
respect to the parameters 6,. at time step t.

9 = VoJ (6ri) (6)
The update of parameters using RMSprop is described by equation (7). First the running average E(g) at time
step t is computed, then applied to the compute of parameter 6;.
E(9%),; = 0.9E(¢°),; + 019,
Ouiri = O — #ﬁegm 7)
with 7 the learning rate and € a smoothing term to avoid division by zero.
GRUET ET AL. 5
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To develop the network, the database is divided into three sets: 70% for the training set, 20% for the test set,
and 10% for the validation set. To evaluate the NN ability to provide accurate forecast from 1 to 6 hr ahead,
we use the root-mean-square error (RMSE) and the correlation coefficient (CC), respectively, defined by
equations (8) and (9).

t=1

RMSE = \/Xn: (Dst(t) - Bst(t)>2/n 8)

Cov (Dst, Bst)
cC=

Var(Dst)Var <5st)

We trained and optimized six LSTM NNs corresponding to forecasts from 1 to 6 hr ahead, using the Lasagne
library in Python (http://lasagne.readthedocs.io/en/latest/index.html). This way, we obtained a vector of
LSTM functions that we note as NN(x), with x being input parameters of the model. This function plays a sig-
nificant role in the process described in the following section.

3.3. Development of Gaussian Process Applied to Time Series Prediction

A GP can be thought as a generalization of a Gaussian distribution applied to functions. Regression based on
GP is a Bayesian method where a prior distribution in function space is conditioned on a given number of
observations, giving rise to a posterior distribution. The appeal of using GP is that even though the theoretical
formulation might seem rather abstract, dealing with function spaces and probability density applied to func-
tions, the practical implementation is rather straightforward, boiling down to a simple analytical expression
that requires no more than linear algebra. Moreover, GP regression outputs a Gaussian distribution, which has
a natural probabilistic interpretation, rather than a single-point estimate. For a complete description of this
method the reader is referred to reference textbooks like Rasmussen and Williams (2006).

A GP can be described by equation (10).

f(x) ~GP(m(x), k(x,x")) (10)
m(x) = E(f(x)) (an
k(x,x") = E((F(x) = m(x))(f(x') = m(x'))) (12)

A GP is completely specified by its mean function m(x)described by equation (11) and by its covariance func-
tion k(x, x') described by equation (12). The covariance function specifies how exactly each point influences
the values that the other points are likely to take on. The main idea is that if x; and x; are close by, we expect
the output from the functions at these points to be similar. Different types of covariance functions exist, also
called kernels, which determine the form of the model. Chandorkar and Camporeale (2018) listed common
kernels used in machine learning and described how the choice of it is fundamental. In this study, we focused
on the NN kernel described by equation (13) (Williams & Barber, 1998).

2 2 T,/
KNN(X,X,) = — XX (13)

T\ V20, /(1 + 207x)

As Rasmussen and Williams (2006) described, if there is no prior knowledge about the function to be approxi-
mated, the mean function is defined to be zero. The aim of our study here is to combine the NN performance
and the GP process to obtain accurate forecast with an uncertainty distribution. Hence, the mean function
m(x) is provided by the NN(x) function described in section 3.2.

GRUET ET AL.
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The joint distribution of the training output f and the test outputs f« according to the prior, is given

by equation (14).
f m(x KX, X) KX, X.
1= (el e o))
f m(x.) KX, X)  K(Xsy Xi)
If there are n training and n- test points, then K(X, Xx) represents the n x n« matrix of the covariance of all
pairs of training and test points.

To make predictions, the posterior distribution over function is needed. To get the posterior distribution, we
need to restrict the prior distribution from equation (14) only to those functions that fit the observed data
points. It needs to be conditioned on the observations as described by the system of equation (15).

foXo, X, f ~N(f., cov(f.))
fo = m(x.) +K(X., X)[K(X, X)] ™ (y — m(x)) (15)
cov(f.) = KXo, X.) — KXo, X)KOX, XK (X, X.)

With this system of equation, test set function values f« can now be sampled from the joint posterior distribu-
tion by evaluating the mean and covariance matrix.

To predict the geomagnetic index Dst based on input features x, the equation (16) summarizes the inher-
ent process.

Dst(t + p) = F(x. 1) + €
€~ N(0, 6?) (16)
f(Xtip) ~ GP(NN(Xerp), Knn (Xtips Xsip))

with p being the expected time forecast. Here we consider p = {1,2,3,4,5,6} to provide multistep ahead
prediction of the Dst index from 1 to 6 hr ahead. The GP part is developed using the Matlab Software
GPML, available at http://www.gaussianprocess.org/gpml/code (Rasmussen & Nickisch, 2010).

4, Results

4.1. Optimization of the LSTM NN

The first step in the development of the GPNN model is to optimize the performance of each LSTM to provide
predictions of Dst from 1 to 6 hr ahead. To train LSTM, we use solar wind data and GPS data described in
section 2 (the density n, the velocity V, the IMF | B|, its B, component, and the magnetic field measured
by the GPS ns41, Bsatgps). We also use the past history of Dst, from 1 to 6 hr back. This is summarized with
the equation (17).

Dst(t + p)yy = NN(n(t), V(t), IMF|B|(t), Bz(t), Bsatgps(t),
Dst(t — 1 hr), Dst(t — 2 hr), ..., Dst(t —6 hr))

(17)

To find the LSTM structure, which is the most suitable for predicting geomagnetic storms, we train it using
various numbers of cells. The optimal number is 20 and after training, testing, and validating each LSTM,
we compare their performance to NN models proposed in the past to predict Dst. Figure 3 presents a com-
parison of CC and RMSE between our model, with and without using GPS data, and previous models predict-
ing Dst based on NN. The temporal coverage of these previous studies is shown in Figure 1 so the reader can
have an estimation of the storm times used in them.

The persistence is also presented. It uses the previous value of Dst as the prediction for the next step
Dst = Dst(t — 1). This is a simple model, which can be used as a baseline and provide great performance
for short-term forecast because of the high correlation between Dst values within 1 hr.

Our models, with or without GPS data, provides performance, which are close to the one obtained by Lazzus
etal. (2017) from 1 to 3 hr ahead but when the expected forecast goes from 4 to 6 hr ahead, our models, with
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Figure 3. LSTM performance in comparison to previous models. Our model with and without GPS data is highlighted
in blue.

or without GPS data, provide better global performance. As an example, when considering a 6-hr-ahead
forecast, our model with GPS data provides a CC of 0.873 and a RMSE of 9.86, while Lazzus et al. (2017)
obtained a CC of 0.826 and a RMSE of 13.09. As the Lazzus et al. (2017) model is based only on previous
Dst values, it shows the benefit of using exogenous data when predicting a geomagnetic index. Bala and
Reiff (2012) used the Boyle index as an input function, and obtained quite similar performance as ours. If
we consider again a forecast of 6 hr ahead, their model presents a CC of 0.77 and a RMSE of 11.09. It is
slightly worse than our model with or without GPS data. We also decided to compare our model with the
one provided by Wu and Lundstedt (1997) as it is the first model using recurrent network. We wanted to
compare the performance of a classic recurrent network to the LSTM, and see how the complexity of the
LSTM cell could provide more accurate predictions. Wu and Lundstedt (1997) provided for a 6-hr-ahead
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Figure 4. LSTM predictions without GPS data (in red dot line) and with GPS data (in blue dot line) for the 2003 Halloween storm. The real value is the grey line.

Table 2
Storm Classification

forecast a CC of 0.82 and a RMSE of 20.8, showing in comparison to our model with or without GPS data, that
the LSTM cell brings more accuracy. We observed that using GPS data generally results in an improvement
when considering important geomagnetic storms. Figure 4 presents predictions obtained with the LSTM
NN, with GPS data in blue and without GPS data in red, for Dst forecast from 1 to 6 hr ahead, for the 2003
Halloween storm event (peak at —422 nT). Predictions for 1 to 2 hr ahead are very similar, but when we
consider the forecast of 3 hr ahead, the model without GPS data predicts a peak of —348 nT while the
model with the GPS data provides a prediction of —405 nT. For a forecast done 4 hr ahead, the model
without GPS data provides a prediction of —335 nT and the one with GPS data, a forecast of —380 nT. For
predictions done 5 hr ahead, predicted peak values are quite the same. However, the 6-hr-ahead forecast
shows that a single-point prediction provided by the NN is not good enough and offers a strong rationale
to combine the NN performance with the GP model to obtain a probabilistic forecast.

4.2, Evaluation of the GPNN Process

As we described before, the GP process aim to provide not only a single point prediction but also an asso-

ciated uncertainty. Metrics like RMSE and CC are defined for single-point prediction and are not adequate
to evaluate probabilistic forecast.

Storm activity is often classified using given thresholds of Dst values.
According to the most common classification, we distinguished three

Level of activity

. levels of storms summarized in Table 2 (Dst < —250, —250 < Dst < —50,
Storm classification

Dst > —50 nT

Dst > —50). The aim here is to use metrics, which will be able to evaluate

Moderate how the GPNN manages to forecast geomagnetic storms into the right
thso "TZEODS; <—=50nT !Smenset “family” of storm. To do so, we focused on the receiver operating charac-
st< 200 =leiEr St teristic (ROC) curve and reliability diagram.
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Table 3

False and True Positive Ratios for Each Storm Category

1-hr-ahead prediction

P (Dst) < —250 —250 < P (Dst) < —50 P (Dst) > —50
Threshold TPR FPR TPR FPR TPR FPR
10% 0.969 270103 0.981 0.163 0.999 0434
20% 0.969 1.11.1 073 0.961 0.105 0.996 0.321
30% 0.969 6.40.10° 0.927 0.0719 0.991 0.240
40% 0.969 400.10* 0.895 0.049 0.984 0.185
50% 0.844 3.00.10°* 0.855 0.0270 0.972 0.138
60% 0.812 278107 0.806 0.0161 0.951 0.102
70% 0.656 278.10°% 0.753 9.30.10 > 0.929 0.0705
80% 0.625 278104 0.670 3.95.1 073 0.895 0.0371
90% 0.468 927.10 > 0.554 161103 0.838 00178
2-hr-ahead prediction
P (Dst) < —250 —250 < P (Dst) < —50 P (Dst) > —50
Threshold TPR FPR TPR FPR TPR FPR
10% 0.969 315103 0.963 0.199 0.999 0.388
20% 0.937 92710~ % 0.934 0.142 0.984 0.273
30% 0.937 3.71.10 4 0.914 0.105 0.973 0.211
40% 0.906 1.85.10% 0.891 0.0834 0.961 0.167
50% 0.781 1.85.10% 0.863 0.0565 0.943 0.134
60% 0.6875 9.27.107° 0.824 0.0390 0.917 0.107
70% 0.656 927.107> 0.783 0.0268 0.895 0.0845
80% 0.500 9.27.10°° 0.720 0.0156 0.858 0.0646
90% 0. .437 0 0.601 56810 > 0.802 0.0363
3-hr-ahead prediction
P (Dst) < —250 —250 < P (Dst) < —50 P (Dst) > —50
Threshold TPR FPR TPR FPR TPR FPR
10% 0.875 3.24.1 073 0.958 0.254 0.984 0.373
20% 0.843 9.27.10 4 0.939 0.186 0.971 0.278
30% 0.813 464.10" 0.912 0.139 0.955 0.228
40% 0.750 1.86.10" 0.890 0.106 0.940 0.182
50% 0.625 927.107° 0.880 0.0819 0.919 0.146
60% 0.593 0 0.809 0.0606 0.893 0.1058
70% 0.593 0 0.766 0.0451 0.826 0.0865
80% 0437 0 0.714 0.0291 0.814 0.0594
90% 0.406 0 0.614 0.0164 0.747 0.0413
4-hr-ahead prediction
P (Dst) < —250 —250 < P (Dst) < —50 P (Dst) > —50
Threshold TPR FPR TPR FPR TPR FPR
10% 0.906 3.241 073 0.968 0.311 0.970 0.339
20% 0.875 1.29.10 3 0.953 0.252 0.949 0.243
30% 0.813 7421 074 0.933 0.208 0.931 0.192
40% 0.813 6.49.10* 0.916 0.169 0.906 0.144
50% 0.781 9.27.10_5 0.895 0.138 0.874 0.104
60% 0.687 927.107° 0.843 0.106 0.841 0.0803
70% 0.562 9.27.107° 0.795 0.0812 0.802 0.0636
80% 0.468 927.107° 0.742 0.0621 0.76 0.0449
90% 0437 927.10°° 0.640 0.0403 0.699 0.0300
5-hr-ahead prediction
P (Dst) < —250 —250 < P (Dst) < —50 P (Dst) > —50
Threshold TPR FPR TPR FPR TPR FPR
10% 0.812 306103 0.956 0.316 0.962 0.346
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Table 3 (continued)

5-hr-ahead prediction

P (Dst) < —250 —250 < P (Dst) < —50 P (Dst) > —50
Threshold TPR FPR TPR FPR TPR FPR
20% 0.812 1.02.10 3 0.934 0.246 0.945 0.265
30% 0.750 463.107* 0.917 0.189 0.926 0.215
40% 0.719 9.27.10° 0.891 0.148 0.906 0.171
50% 0.625 9.27.107° 0.856 0.120 0.881 0.139
60% 0.562 9.27.107° 0.824 0.0942 0.853 0.107
70% 0.468 0 0.779 0.0740 0.810 0.081
80% 0.468 0 0.725 0.055 0.754 0.0654
90% 0.468 0 0.639 0.0381 0.685 0.0430
6-hr-ahead prediction
P (Dst) < —250 —250 < P (Dst) < —50 P (Dst) > —50

Threshold TPR FPR TPR FPR TPR FPR
10% 0.500 8.34.10 ° 0.953 0.352 0.932 0.307
20% 0.437 49210 0.928 0.289 0.909 0.241
30% 0437 324.10°° 0.904 0.244 0.886 0.186
40% 0.406 2.78.10° 0.890 0.202 0.862 0.161
50% 0.375 1.76.10°3 0.859 0.167 0.834 0.130
60% 0.375 139.10°° 0.821 0.138 0.798 0.113
70% 0.281 747.10* 0.788 0.115 0.757 0.0914
80% 0.281 3.70.10* 0.735 0.0926 0.712 0.0693
90% 0.281 278.107° 0.661 0.0691 0.649 0.0455

Note. The optimal value is in bold and red.

4.2.1. Receiver Operating Characteristic Curve

Our GPNN model provides to an operator a probabilistic forecast, which can be used in a decision-making
scenario. For example, a decision made by an operator to turnoff a system according to the level of storm
might be taken when the forecast probability of this storm exceeds a predetermined “trigger” threshold.
For any storm, a graph called receiver operating characteristic curve (know as ROC curve) can be constructed.

This ROC curve is based on a contingency table in which predictions of Dst are classified according to the real
value of Dst. The aim is to estimate the probability of a prediction to belong to the right category of storm via
binary classification, in the sense “one category versus all the others.” Camporeale et al. (2017) used the same
process to classify the category of solar events between ejecta, coronal hole, sector reversal, and streamer
belt. The ROC curves represent the false positive ratio (FPR) versus the true positive ratio (TPR). The FPR is
the ratio of false positive divided by the total number of negatives. The TPR also called sensitivity is the ratio
of true positives divided by the total number of positives. For perfect classifications, the FPR has to be equal
to 0 and TPR equal to 1; thus, the value of the threshold that produces the point closest to these values
is optimal.

Table 3 presents ROC values obtained from 1- to 6-hr-ahead forecasts, depending on the level of storm. The
ROC is usually shown graphically, but numerical values are more relevant for the reader to analyze variations
depending on the threshold. The optimal threshold is in red and bold; it is computed to minimize the
Euclidean distance from FPR = 0 and TPR = 1. ROC values obtained for the highest level of activity, meaning
Dst values < —250 nT provide FPR for each threshold (the highest value is 2.7.1 073 for a 10% threshold when
considering a 1-hr forecast). The TPR behavior is more complicated to generalize. For predictions done from 1
to 5 hr ahead, values are always greater than 0.719 for thresholds from 10% to 40%, and then there is a
decrease. If we focus on the 6-hr-ahead forecast, the best TPR is 0.5 for a 10% threshold. It means that the
more there is an increasing probability for a superstorm to occur, the less the model is able to forecast it with-
out misjudgments 6 hr in advance. However, for intense storms (—250 nT < Dst < —50 nT), the GPNN pro-
vides TPR higher than 0.670 for thresholds between 10% and 80%, and for moderate storms, this model
provides TPR higher than 0.649 for every thresholds, from 1 to 6 hr ahead.
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Figure 5. Reliability diagram for Dst forecast from 1 to 6 hr ahead. The diagonal is in red dot line.

4.2.2. Reliability Diagram

The ROC discussed in the previous section gives information about the ability of the forecast system to detect
the occurrence of a geomagnetic storm event for a given threshold, in terms of false and true positive.
Reliability diagrams measure how closely the forecast probabilities of an event correspond to the actual fre-
quency with which an event is observed. A perfectly reliable forecast is one in which an event predicted with
probability p is observed, on average, with frequency p. The reliability diagram bins the forecasts into groups
according to the issued probability, shown on the horizontal axis. The frequency with which an event was
observed to occur for each bin is then plotted on the vertical axis. If the reliability curve lies above/below
the perfect diagonal slope, the resulting forecasts are under/over confident, that is, they vyield
smaller/higher probabilities for a specific outcome than observed.

Figure 5 presents reliability diagrams obtained from 1- to 6-hr-ahead forecasts. It shows that the 1-hr-ahead
forecast slightly underestimates the storm, when there are more than 35% of probabilities for a given value of
Dst. For example, when there is 80% of risk for a predicted storm, the real observed frequency of it is 90%. The
GPNN provides reliable forecast for 2-hr-ahead prediction, as the observed frequency of storm regarding the
predicted probability defines almost perfectly a diagonal. For predictions further than 3 hr ahead, the more it
goes in time, the more it overestimates the probability of storms. If we focus on the 6-hr-ahead prediction,
when the GPNN model provides a predicted probability of 90%, the real observed frequency is of 65%.
This model is overconfident. Once the reliability diagram is obtained, it is of interest to seek simple correc-
tions to the forecast probabilities (re-calibration). This issue will be investigated elsewhere in greater detail.
Here we just show Figure 6 that by multiplying the standard deviation by a factor of 2 or 3, it is possible to
improve the reliability for predicted probability higher than 50% (Figure 6). For example, if the predicted
probability is 90%, by multiplying sigma by 2, the corresponding real frequency is 72% and if we multiply
by 3, we get 80%. This way, we managed to get closer to the diagonal, when the probability of events
increases. Conversely, a simple rescaling of the obtained standard deviation yields worse reliability for prob-
abilities smaller than 50%.

Figure 7 presents predictions provided by the GPNN model for the 2003 Halloween storm. For predictions
from 1 to 5 hr ahead, thanks to this process, the predicted value of Dst is close to the real value. For example,
for 5 hr ahead, the real peak of activity of —422 nT has a predicted value of —391 nT. The main contribution of
the GP process here is shown for the 6-hr-ahead forecast. While the LSTM alone failed to reach the highest

observed frequency
v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
predicted probability

Figure 6. Reliability diagram for the Dst prediction depending on the sigma value. The diagonal is in red dot line.
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Figure 7. GPNN performance to predict Dst for the 2003 Halloween storm. The predicted value is the purple dot line. The real value is the deep blue line. The gray
shadow represents one standard deviation.

peak of activity, the GPNN manages to have a predicted value closer to the real value than the LSTM one, and
the covariance over the mean value encompasses the peak of activity (compare with Figure 4).

5. Conclusion

In this paper, we have presented a model to predict the geomagnetic index Dst from 1 to 6 hr ahead, based
on the combination of ANN and GP, called GPNN.

First, we developed a LSTM NN to provide Dst predictions from 1 to 6 hr ahead. A specific LSTM has been
developed for each time predictions, then global performance of LSTM has been compared to past forecast-
ing models of Dst. It shows that the LSTM provides very good global performance in comparison to previous
models. When focusing on superstorm like the well-known 2003 Halloween storm, we underlined that even if
global metrics are excellent, the 6-hr-ahead forecast fails to predict the highest peak of activity.

Second, to obtain a probabilistic forecast instead of a single point prediction, we developed a GP, which con-
siders the LSTM as the mean function. Thanks to this combination, we observed that we managed to predict
accurately superstorm like the 2003 Halloween storm for predictions from 1 to 5 hr ahead. For the 6-hr-ahead
prediction, the covariance manages to encompass the peak of activity.

To evaluate this probabilistic forecast, we use ROC curves and reliability diagram. ROC curves demonstrate
that for each time forecast, storm level, and threshold, the FPR is very low. However, concerning TPR, values
are great for moderate and intense storms, but for 6-h-ahead prediction of superstorm, misjudgment is pos-
sible when the threshold increases. In this case, the optimal threshold is around 10%, which will need further
improvement. The reliability diagram shows that as the prediction goes further in time, the GPNN provides
great performance for predictions from 1 to 3 hr ahead, but for 4 to 6 hr ahead, an overestimation of the
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storm is possible. We also demonstrate that, thanks to this diagram, it is possible to evaluate the optimization
required to improve the reliability of the GPNN, and possibly to re-calibrate the prediction.
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